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Abstract

Doppler tracking data from the Mariner II spacecraft, which came within
41,000 km of Venus in December 1962, are used to obtain the mass of Venus and

the astronomical unit. Also, a measure of the lunar inequality by means of the

monthly periodic variation in the Doppler curve permits a determination of the
Earth-Moon mass ratio.

The method of data reduction is a least-squares differential correction of the

spacecraft's orbit along with the three constants and several other parameters

necessary to describe important non-gravitational forces. The geocentric location

of the tracking stations and the heliocentric position of Venus are subject to

correction also. The differential coefficients, which relate variations in the con-

stants and parameters to variations in the Doppler data, are obtained by numer-

ically integrating a set of variational equations along with the equations of

motion. Residuals are formed by directly subtracting the computed Doppler data

from the observed values. Corrections for light-time, atmospheric refraction, and

station timing are applied to the computed data.

The results indicate that the Sun-Venus mass ratio is 408505 ±6, the number

of light seconds in one astronomical unit is 499.0086 -+-0.0017 see and the Earth-

Moon mass ratio is 81.3001 ±0.0013. Information on the locations of the tracking
stations and the direction and distance of Venus at the time of the encounter of

Mariner II with the planet is also given.

viii JPL TECHNICAL REPORT 32-816



Determination of the Masses of the Moon and Venus and
the Astronomical Unit from Radio Tracking Data

of the Mariner II Spacecraft

I. Introduction

The primary purpose of this study is to show how

tracking data from what are generally termed deep-space

probes can be used to provide fundamental information

on the system of astronomical constants and on the

ephemerides of the Earth and planets. In particular, data

from the Mariner II spacecraft, which was launched from

the Earth on August 27, 1962 and came within 41,000 km

of Venus on December 14, 1962, are used to obtain a

determination of the mass ratio t_ of the Moon to the

Earth, the mass M_ of Venus in units of the solar mass, the
number of kilometers A in one astronomical unit, the

three-dimensional geocentric position of Venus at the

time of the spacecraft's closest approach to Venus, and,

finally, the geocentric coordinates of the tracking stations

at Goldstone, California.

The effect of new values of the constants on the entire

system of astronomical constants is explored in detail but

no attempt is made to investigate the long-term effect on

the Venus ephemeris of an improved mass ratio and mea-

surement of the position. To do this properly would require
a combination of the Mariner II result with the radar

Venus bounce measurements and optical observations

taken over a period of many years. Also, a second Mariner

spacecraft to Venus is planned in 1967 and the likelihood

of combining a 1962 and 1967 position determination for

an ephemeris improvement offers far greater possibilities

than using the single 1962 measurement. One of the

results of the investigation is that it is not possible to

improve any of the Earth's orbital elements because of

the relatively short duration of the accurate Mariner II

data from September 5 to December 20, 1962. However,

other space probes of longer duration, for example the

current Pioneer series, can provide improvements in some

of the Earth's elements and suggest an area for future

study.

The geodetic implications of the station location de-

termination are not discussed here, although G. Veis*

is currently comparing such determinations from Mariner

and Ranger space probes with station locations as ob-

tained from several thousand optical observations of
satellites.

In describing the methods and results of the reduction

of the Mariner II data, the following organization has

been adopted. In Section II a summary of the study is

given. The system of astronomical constants is discussed

*Private communication, G. V. Veis, Smithsonian Astrophysical

Observatory.
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in Section III from the viewpoint of the history of the

subject, and the problems that give rise to a system of
constants are considered. This material is largely tutorial

in nature and provides some degree of motivation for the

detailed analyses of later sections. In Section III-E for-

mulae are given which permit the evaluation of results
from the Mariner II data in terms of the complete system

of constants. Arguments are presented in Section III-F

to explain how it is possible to obtain certain constants

from Doppler data of the type for Mariner II.

Detailed methods for obtaining the constants from the

real data are described in Section IV, starting with a

discussion of the method of least squares as used to

obtain differential corrections to a preliminary orbit and

set of constants. Also included in this section are descrip-

tions and justifications for formulae relating to the com-

putation of the orbit, the Doppler residuals, and the

differential coefficients for the least-squares method. The

orbit computation is complicated by the introduction of

solar radiation pressure and certain low-thrust forces on

the spacecraft. Also it is found that in order to compute

sufficiently accurate residuals, it is necessary to compute

the Doppler shift to terms in 1/c-', where c is the velocity

of light, and, additionally, to consider light-time and

refraction corrections. The interpretation of the time

assigned to an individual Doppler measurement is dis-
cussed in Section IV-C-3.

Numerical results are presented in Section V. In Sec-

tions V-A and V-B the numerical accuracy of the methods

described in Section IV is investigated, and in Section

V-C the nature and degree of information about the

constants are explored before the introduction of the
Mariner II data. The remainder of the section is con-

cerned with a number of least-squares solutions for the

constants, and in Section V-E the results of the investiga-
tions are summarized.

Mathematical derivations, which contribute little to a

basic understanding of the methods, are relegated to the

appendices, although Appendix E contains a listing of

all the data used in the solutions of Section V-D along
with two sets of residuals from the best of these solutions.

II. Summary

Preliminary determinations of certain astronomical

constants from Doppler tracking data of the Mariner II

spacecraft have been reported before in 1963 (Ref. 1)

and 1965 (Ref. 2). However, both of the earlier determi-

nations suffer from serious defects in the methods used

to obtain the constants; and, in fact, the preliminary

nature of those determinations was founded on the pres-

ence of systematic errors which have been removed only

recently.

In Ref. i the least-squares solution for the constants and

the six orbital parameters of the spacecraft's orbit give a

mass ratio ix-1 of the Earth to Moon of 81.3012 4-0.0034

and a gravitational constant GMv for Venus of

324857 4- 24 km 3 sec-2; but the values included system-

atic errors caused by a neglect of low-thrust forces from

the spacecraft's attitude-control system and by an inability

to adjust the coordinates of Venus during encounter. The

solution of Ref. 2 removed these deficiencies by including

parameters for the low-thrust forces and the orbit of

Venus in the normal equations of the differential correc-

tion, but it did not apply the corrected parameters to a

recomputation of residuals in the data. Until the cor-

rections to the orbital parameters of Venus could be

applied to the computation of a new ephemeris, along

with the necessary recomputation of the spacecraft's

orbit, it was impossible to verify numerically the com-

putation of the differential coefficients. Subsequent to the

publication of results in Ref. 2, it was found that an error

in the computer program used to compute the differential
coeflqcients had indeed introduced erroneous corrections

to the orbit of Venus. Therefore, the value of GMv

(324806 4- 20 km :_ sec -_) given in Ref. 2 was similarly
erroneous.

The question of the effect of errors in the Earth's

ephemeris on the Mariner II solutions was considered in

Ref. 2 by including orbital elements of the Earth in the

normal equations. The conclusion that the determina-
tions of the constants are not sensitive to reasonable

errors in the Earth's ephemeris is still valid, as is the

other important conclusion of Ref. 2 that the determina-

tions are significantly sensitive to expected variations in

the position of Venus at encounter but not to its velocity.

With the removal of systematic effects that influenced

the previous solutions, although some errors remain as a

result of computing the Doppler data in single precision

on the IBM 7094 computer, the preliminary nature of

the values of the constants no longer holds and future

modifications should not be significant with respect to
the stated uncertainties on the constants. The Earth-

Moon mass ratio is now /_-1= 81.3001 ± 0.0013, the

gravitational constant is GMv=324871.5±2.5 km 3 sec -2,
and the number of light seconds in one astronomical unit

(a.u.) is rA = 499.0036 ± 0.0017 sec. A reliable value

JPL TECHNICAL REPORT 32-816



of the a.u. from Mariner II was not available before. It is

expressed by the constant rA because this is the measured

quantity, but it can be converted to A in km by multiply-

ing by the velocity of light c. With c given by 299792.5

km/sec, the corresponding value of A from the Mariner
data is A = 149597550 _ 500 km.

A recent prepublication result by Ash, Shapiro and

Smith at the Lincoln Laboratory gives 499.004786 ±
5 )< 10 -G sec for rA as obtained from a combination of

post 1950 meridian-circle observations of Mercury, Venus

and the Sun with radar measurements of Mercury and

Venus. They also obtain a value for the Sun-Venus mass

ratio of 408250, using general relativity theory and a value

of 408450 using Newtonian theory with an uncertainty

of ± 120 in both cases. The Mariner II data provide a

more direct determination of GM_ than of the mass ratio,

but the latter can be computed by the formula kzA3/GMv

where k is the Gaussian gravitational constant. The

result is 408505 ± 6 which, strangely enough, is consistent

with the Lincoln Laboratory determination using New-

tonian theory but differs by a little more than two times

the uncertainty for the value obtained with general rela-

tivity theory. The resolution of this inconsistency will

have to await further determinations of the mass by the

1967 Mariner probe to Venus and by additional analyses

with radar bounce data. Also, Rabe and Francis are

obtaining new values of the constants, including the

mass of Venus, from observations of the minor planet
Eros. A further refinement of the Mariner II results will

not occur until the computations are done in double

precision, probably with a more sophisticated parameter
estimation scheme to handle the low-thrust forces.

A summary of how three astronomical constants can

be determined from the Mariner II data and how they

are correlated with other parameters in the least-squares

solution is given in the following table.

Source of Significant
Constant

determination correlations

Earth-Moon mass None

ratio

Mass of Venus

Astronomical unit

Monthly periodic

variation in

Doppler curve

Encounter data

Combination of

cruise and

encounter data

Spacecraft orbit

Ephermeris of Venus

Astronomical unit

Spacecraft orbit

Ephemeris of Venus

Mass of Venus

For a more quantitative evaluation of the correlations,
see Section V-D-5 and Table 17.

A. Data Reduction

The useful Mariner II tracking data consist of Doppler

measurements made at the Goldstone station of the Deep

Space Instrumentation Facility (DSIF). Other stations

in this facility also tracked Mariner II, but the accuracy

of the data was not controlled by an atomic frequency
standard at that time and, for this determination of the

constants, only the Goldstone data are used.

The method of solution is that of weighted least

squares with a modification to allow the introduction of

a-priori information into the process. As in any least-

squares solution it is necessary to compute residuals in

the data, and by convention the sense of the residuals is

the observed minus the computed (O-C) values. The

adopted procedure is to simply represent the Doppler

measurement as accurately as necessary by a mathe-
matical formula and then to form the O-C subtraction.

The actual measurement O is stored on magnetic tape. An

accurate representation of the data involves considera-

tions of light-time, refraction corrections, and an inter-

pretation of the station procedure used to record the time
of an observation.

Practically all least-squares data reductions in celestial

mechanics are accomplished by differentially correcting
nominal or standard values of the orbital and astronom-

ical constants to obtain the least-squares solution for both

the orbit and constants. Fortunately, a preliminary orbit

for Mariner II is available (Ref. 3) and it is possible to

proceed directly to the differential correction. Therefore,

the formation of differential coefficients is the major con-

cern of the current solution for the constants. The param-
eters included in the differential correction are the fol-

lowing:

Set I: Orbital elements of the spacecraft expressed as

six cartesian coordinates of position and ve-

locity at an arbitrary epoch.

Set II: The astronomical constants _, ra and the mass
of Venus.

Set III: Non-gravitational parameters representing
forces from solar radiation pressure and atti-

tude control gas jetting.

Set/V: Orbital elements of the Earth and Venus. Only

the three heliocentric cartesian position co-

ordinates of Venus at planetary encounter are

actually corrected.

JPL TECHNICAL REPORT 32-816 3



Set V: Two coordinates for each tracking station--
the distance of the station from the Earth's

axis of rotation and the longitude. The com-

ponent parallel to the Earth's axis cannot be
determined.

The many formulae used to compute the differential

coefficients associated with these five parameter sets are

derived in Section IV, and, also, one can find there a

description of the mechanization of the least-squares

process itself. The computer program used to obtain the
results is a version of the JPL single precision orbit de-

termination program (Ref. 4 and 5), although major
modifications were carried out in order to extend the

differential correction to the low-thrust and ephemeris

parameters.

B. Significance of Low-Thrust Forces

Although there is nothing particularly interesting in

the nature of the small forces on the spacecraft from the

attitude-control system, at least from the viewpoint of

the astronomical constant determination, it is necessary

to give as careful attention to the establishment of a

proper representation of these forces as to the constants

themselves. Such attention is necessary because any mis-

representation of the forces will introduce systematic
errors into the solution for the constants of interest.

Ideally, the estimation scheme should take account of

the fact that the magnitude and possibly the direction of
the forces are random variables which take on different

values at different points in time. However, the least-

squares program used to obtain the current results does

not adapt easily to this sort of estimation scheme, and

the procedure adopted for the consideration of the small

forces is to represent them by a vector whose magni-

tude is a quadratic function in time. Ultimately the

Mariner II data could be subjected to a more sophisti-

cated estimator, and the resulting values for the con-

stants would be slightly more credible because of a

greater assurance that systematic errors have been elim-
inated; but for now, the forces are assumed to obey the

quadratic model and the coefficients in the expression

for the force are obtained by least squares simultaneously

with the constants. The results of this approach indicate

that it is quite reasonable, and for comparison, another

representation which assumes that the forces vary as

the inverse square of the spacecraft's distance from the

Sun gives very unreasonable results as shown in Section
V-D-1.

The quadratic representation of the low-thrust forces
is written as

_ = (f, U + f2 T + [3 N) (1 -- al _"-- ao, r °-) (1)

where r is the time from some arbitrary epoch and U, T

and N are unit vectors along the spacecraft's principal

axes. The least-squares fit to the coefficients in Eq. (1)

from the cruise data, defined by data in the time interval

from September 5 to December 7, 1962 before Venus

dominated the spacecraft's motion, is

f2 =

_1 ---_

@2 z

epoch =

(--0.03 ±0.35) X 1@ TM km/see'-'

(-0.36 ±0.02) X 1@ TM km/sec 2

(-0.15 ±0.15) X 10-1° km/sec 2

(0.07 ±0.29) X 10-_ see -1

(0.81 ±0.73) × 10 -14 sec-:

1962, September 5, 0 _.0 E. T.

The solution indicates a decreasing force whose mag-

nitude behaves as shown in Fig. 1 with the error bounds

computed from the formal uncertainties on the param-

eters as determined from diagonal elements in the in-

verted matrix of the least-squares normal equations.

Accelerations are converted to forces by taking 1.9822

X 105 gms as the mass of spacecraft. The curve as ex-

trapolated into the encounter region of time should not
be considered reliable. In Sections V-D-3 and V-D-4

when the constants are obtained from encounter data,

the five f and a parameters are included also for correc-

tion. However, the cruise data provide preliminary values

which can be used in more complete solutions. This is

significant when one realizes that without any informa-
tion on the values for f,, fz and f3, the behavior of the

solution to variations in cq and a_ is quite nonlinear with

respect to other parameters in the solution. For example,

if fl, f_ and f:_ are all zero, then any correction to cq and

¢x_will satisfy the least-squares fit to the data.

C. The Earth-Moon Mass Ratio

The Earth-Moon mass ratio _-1 is obtained by measur-

ing the amplitude of the periodic component in the Dop-

pler data resulting from the motion of the Earth about
the Earth-Moon barycenter, or in effect by obtaining a

dynamical measurement of the lunar inequality. For this

purpose, the cruise data alone are used so that systematic
effects in the encounter data from the mass and position

of Venus and the a.u. are neglected. Actually, in the

differential correction program it is not the mass ratio t_

JPL TECHNICAL REPORT 32-816
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but the gravitational constants GM and GE for the Moon

and Earth that are available for correction. Then the

mass ratio is given by

GE
- (2)

GM

and with the formal uncertainties on GE and GM from

the normal equations given by (rG_ and (ro_ and the

correlation between them by po_ _, the uncertainty

on _-1 can be computed by

O.GE 2= (TGM _ 2

pGE, O,_ GE GM

(3)

Two basle solutions are made: the first, Solution A, holds

GE fixed at its value as determined by the Ranger series

of probes (Ref. 6), and the second, Solution B includes

GE in the least-squares solution as a parameter for cor-

rection. A solution for both GE and GM is not possible
because the spacecraft is too far from Earth at the be-

ginning of the cruise data. Thus, the constant GE is given
an a-priori uncertainty of ±10 km_/sec = which is more

than 10 times larger than the uncertainty for the Ranger

determination. This a-priori uncertainty conditions the

normal equations and permits a solution for both GE

and GM within the limits set by the a-priori uncertainty.

The results of the two solutions are given in the fol-

lowing table (computation of mass ratio _-1):

Parameters Solution A Solution 8

GE (km 3 sec -2)

GM (km 3 sec -2)

_GE/GE

_rGM/GM

PGE, GM

cr#/D

i_-!

398601.27

4902.8442

0

13.756 X 10 -6

0

13.756 X 10-6

81.3ooo +_ 0.0011

398598.23

4902.8096

23.882 X 10-6

21.634 X 10-6

0.76235

15.831 X 10-6

81.3000 ___0.0013

The fact, that the correlation pGE.C,Min Solution B is of

the right sign and magnitude to cancel the large errors

in GE and GM (see Eq. 3) and thus give a result com-
parable to Solution A, is evidence that the Mariner data

yield _ and not the gravitational constant itself. Also the

equivalence of the value of/_ in the two solutions indi-
cates that the determination is not sensitive to reasonable

errors in the geocentric gravitational constant GE.

D. The Remaining Constants

A number of least-squares solutions, whose purpose is

to provide values for the astronomical unit (a.u.) and the

mass of Venus with as little systematic error as currently

possible, are displayed in Section V-D along with a
listing of the data and the residuals associated with the

determined constants in Appendix E. All the parameters

in the five sets of Section II-A are differentially corrected

with the exception of the elements of the Earth's orbit.

It was shown in Ref. 2 that a correction of the Earth's

ephemeris is not necessary in the case of the Mariner H

data. A brief description of the various solutions can be

given here, but for a more detailed discussion of the

motivation and results of each, it is necessary to examine
Section V-D.
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As a first solution for the mass of Venus, only the

encounter data are used and the Lincoln Laboratory
value of the a.u. is included in the determination with

an a-priori uncertainty of ±100 kin. Effectively, a mass
is determined based on this value of the a.u. Also the

position of Venus at encounter is included in this solution.

The remaining solutions for the mass and position of
Venus use all the Mariner II data. The numerical sta-

bility of the solutions is investigated by statistically

combining individual solutions from different batches of

data and by performing another solution with all the data

collected in a single batch. Also results are obtained
based on different fixed values of the a.u. as well as with

the a.u. in the solution for correction. Solutions with a

fixed a.u. are investigated because the a.u. from Mariner
II can be determined to about ±500 km which is con-

siderably larger than that claimed by Lincoln Labora-

tories. Thus, although it is important to obtain an

independent solution for the a.u. from the Mariner II

data, it is also important to investigate the solution for

the mass and position of Venus when the a.u. from

optical and radar bounce data of the planet is held fixed.

In this way the parameters that can be determined best

from the Mariner II data can be given with less un-

certainty than when the a.u. is included for correction.

The results of the various solutions demonstrate that

the solutions are quite stable for the Mariner peculiar

constants and that when a-priori information on the value

of the a.u. is ignored, the resulting solution for it is

consistent with the Lincoln Laboratory value, although
much more uncertain.

The values for the astronomical constants given at the

beginning of this section are a composite of the various

solutions of Section V-D. The important conclusion of

the solutions is that the values are reasonably free of

systematic errors. In addition to these constants other

determined parameters from the five sets of Section II-A

are of interest. For example, the coordinates of the two
Goldstone stations, stations 11 and 12, that tracked

Mariner II are available as the distance R cos q_' of the
station from the Earth's axis of rotation and the station

longitude east of Greenwich. Because no account is taken

of the wandering of the pole during the three months of
the Mariner data, the coordinates are referred to some

mean pole during the time interval of the data. Of course,

the coordinates could be referred to a reference pole,

but for the purposes of this work it is satisfactory to

consider them as referred to the pole of October 1962,

since the uncertainty in the coordinates is on the order

of a few meters anyhow. The results are:

Station 11: R cos q¢ = (5206888.6 ± 4.2) m

,k = '2A8 ° 09' 02"05 ± 0':82

Station 12: R cos _' = (5212087.6 ± 8.8) m

X = 248 ° 11' 89"98 ± 0"82

The determination of the position of Venus at plane-

tary encounter can be converted to a geocentric direction
and distance. The direction can be determined to better

than lh see of are, which is accurate enough for serious

consideration in any attempt to improve the ephemeris

of Venus. Also, the distance can be obtained only by

radar, and the value from Mariner II provides a value

which is independent of radar bounce determinations.

The coordinates are given as geocentric right ascension a

and declination 8 in true equatorial coordinates for 1962,

December 14, 20 _0 E.T. The distance r is in units of the

a.u. based on a velocity of light of 299792.5 km/see.

Again, the fundamental length is light seconds. The co-
ordinates are:

a = 14 _51 m58?282 ± 0_015

= --13 ° 39' 28"03 ± 0"4

r =- 0.38640514 -+- 0.97 X 10 -Ga.u.

III. Astronomical Constants

In any physical theory which purports to represent

observed phenomena, certain constants are introduced to

assure the compatibility of theoretical predictions with

the actual observations. Physical constants, for example

the velocity of light c or the gravitational constant G, are

determined by constructing experiments which are par-

ticularly sensitive to a single constant of interest. On the
other hand astronomical constants have, until the advent

of space technology, been determined by making obser-

vations of natural bodies over a period of many years.

Only within the past few years has it become possible to

accomplish experiments with artificial satellites and space

probes which can determine some astronomical constants

more accurately than was possible previously.

Because of the importance of a continual comparison

of the theories of celestial mechanics with observation, it

is important that a self-consistent set of astronomical

constants and ephemerides exist. Thus in astronomy,

more than in other physical sciences, there is a natural
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reluctance to introduce new determinations of the con-

stants into the theories. Of course from the viewpoint of

space technology, where the constants and ephemerides

are required to achieve precise space navigation, con-

sistency is not as important as making certain that the

most current constants and ephemerides are used. In

recognizing the validity of both viewpoints, Herrick

(Ref. 7) has made the distinction between astronomical

and "astrodynamical" values of the constants and ephem-
eral data. He clarifies this distinction as follows:

"In the construction of astronomical almanacs and

ephemerides, we are interested primarily not in what

we may know to be currently the best theories, the

best values of constants, or the best ephemeral data,

but in a consistent set of theories, constants, and

ephemerides that will make possible the use of many
decades of observation in the ultimate determination

of improved ephemerides. In astrodynamics, on the
other hand, we are concerned with both constants and

ephemerides that agree with the most recent obser-

vational data. For the constants, this concern implies

a continual updating; for the ephemerides, it implies

the use--anathema to the astronomer----of empirical

corrective terms. These should be designed to intro-
duce recent observational data, however, without

destroying the dependence of the mean motion, for

example, upon long-term astronomical theories and
observations."

This quotation summarizes the motivation for under-

taking a study of constants as done here. However,

before discussing the current set of constants and its

implication, we include a brief history of the subject.

Clemence (Ref. 8) suggests that Simon Newcomb,

sometime before 1877, was probably the first to recognize

the need to systematize the astronomical constants. In

1896 the directors of the principal national ephemerides

met in Paris and adopted uniform values of some of the

constants. In 1911 they met again and established a co-

operative effort in the construction of ephemerides.

However, a well-defined system of constants was not yet

available. The first definitive work on the entire system

of constants was that of de Sitter (Ref. 9) as edited and

completed by Brouwer after de Sitter's death in 1984.

He chose eight fundamental constants which were mutu-

ally independent and gave enough theoretical relation-
ships to allow the evaluation of 28 derived constants from

the eight fundamental ones. In addition, linear differen-

tial correction formulae were given so that any future

correction to a fundamental constant could be propa-

gated easily throughout the whole system of constants.
Current discussions of constants still use this method of

presentation (see Ref. 7, 8, and 10). De Sitter's funda-

mental constants were the following:

RI-- the mean radius of the Earth at latitude

q5 = sin -1 _'_

gl--the acceleration of gravity at mean latitude

q_= sin -1 x/l/3

H--the dynamical flattening, (C - A)/C

X, X--constants depending on the inner constitution of
the Earth

fro--solar parallax

c--velocity of light

t,-1--reeiproeal of Moon's mass in units of the mass of
the Earth

The third international meeting on constants occurred

in 1950, again in Paris, and among other things recom-

mended the introduction of ephemeris time as the basis

of time measurement. With the approval of this recom-

mendation by the International Astronomical Union (IAU)

in 1952, the orbital motion of the Earth-Moon system

about the Sun replaced the Earth's rotation as the natural
clock for the calibration of all time standards.

The most recent meeting to discuss the system of

astronomical constants was held in 1968 as IAU Sym-

posium No. XXI and the papers presented there were

published in a single volume (Ref. 11). For the first time,

representatives from the field of space technology were

present and in fact Clemence (Ref. 8, p. 97) states that

the immediate incentive for the meeting was the appli-

cation of space technology to the general subject of

astronomical constants. This can be appreciated by

reviewing some of the events which had occurred before

1968 and which had contributed to an improvement in

the system of constants. First of all, observations of

artificial Earth satellites had directly yielded geodetic

parameters which determine the external gravitational

potential of the Earth. Kaula (Ref. 11, p. 21) prepared a

review of these parameters for the 1968 symposium and

listed current values of the geocentric gravitational con-
stant GE and a set of harmonic coefficients in the Earth's

potential function. The new field of Radar Astronomy

had succeeded in recording signals bounced off the
Moon and Venus and the observations had been reduced

to obtain the mean distance to the Moon (Ref. 11, p. 81)
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and the a.u. (Ref. 11, pp. 153, 177, and 217). Also, Hamil-

ton informally reported to the 1963 symposium prelimi-

nary results from the tracking of Mariner II with respect
to a determination of the masses of the Moon and Venus.

Because of these recent improvements, a series of eight

resolutions was passed at the 1963 symposium which

effectively urged the recognition of the importance of

radar bounce and space probe observations to the field of
astronomical constants. In Resolution 4, a major revision

in the selection of fundamental constants was recom-

mended which would reflect the recent advances in the

field, and in August-September, 1964 the General Assem-

bly of the IAU approved the resulting system of constants

as established by a Working Group appointed by the
Executive committee of the IAU. This group consisted of

W. Fricke (Chairman), D. Brouwer, J. Kovalevsky, A. A.

Mikhailov, and G. A. Wilkins (Secretary). Their entire

report is given in Ref. 11, pp. 101-107.

The selection of fundamental constants in 1964 was

primarily made on the basis of the direct nature of their
determination. Because there remains some degree of

arbitrariness in the selection, the Working Group chose

to refer to the new set as primary instead of fundamental.

Also, they designated two of the constants as "defining
constants" in the sense that they were recognized as

necessary to define the units used in the theories of
Celestial Mechanics. The list follows as a direct quote

from the report of the Working Group. Hereafter, these
constants will be referred to as the IAU list of constants.

Defining constants

1 Number of ephemeris s = $15569"25.9747

seconds in 1 tropical year

2 Gaussian gravitational k = 0.01720209895

constant defining the a.u.

3

4

Primary constants

Measure of I a.u. in metres A -- 149600 X 10_

Velocity of light in metres

per second

c = 299792.5 X 103

5 Equatorial radius for ae = 6878160
Earth in metres

7

Dynamical form-factor for 12 = 0.0010827
Earth

Geocentric gravitational

constant (units: m_s -_)

GE = 398603 X 109

8 Ratio of the masses of the

Moon and Earth
= 1/81.30

Sidereal mean motion of

Moon in radians per

second (1900)

* =2.661699489 X 10-Gn¢

10 General precession in p -- 5025'.'64

longitude per tropical

century (1900)

11 Obliquity of the ecliptic ¢ = 2.q° 27' 08'/26

(1900)

12 Constant of nutation (1900) N = 9':210

In addition to listing the constants, the Working Group

also included a set of notes to go along with them. These

are not given here because a detailed discussion of the

constants follows. However, it is recommended that they

be consulted by anyone who is seriously interested in the

subject. Likewise, the auxiliary constants and factors and

the derived constants are not given here verbatim, but any

which are required for the reduction of the Mariner II

data or which are necessary for a general discussion
of constants will be introduced in context as needed.

On the basis of the preceding discussion of the history
of the astronomical constants, one receives a definite

impression that we are in a period of rapid change with

respect to both concepts and numerical values. This is

emphasized by the fact that the 1964 system of constants

is already out of date from the viewpoint of astro-

dynamics, where accurate constants are needed for pre-

cise space navigation. Of particular significance is a
recent measurement* of the light time r,t associated with

one astronomical unit by means of a combination of

post-1950 meridian-circle observations of Mercury, Venus,
and the Sun with radar measurements of Mercury and

Venus. The result is claimed accurate to 5 X 10-'; light-

sec or to a relative accuracy of 0.01 )< 10-", which makes

ra one of the best determined constants in the solar

system. Certainly, it is known more accurately than the

velocity of light c whose relative uncertainty is about

2 X 10-'L Thus, it is clear that ra should be listed as a

primary constant in place of the constant A which, as a
derived constant, would be given by c rA. Other improve-
ments in the IAU constants have occurred through a

determination of GE from the Ranger series of space

probes (Ref. 6) and through the direct determination of

t_ from the present analysis of the Mariner II data. Also

*Shapiro, Irwin I., Lincoln Laboratories, private communication.
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the planetary masses have been improved by the deter-

mination of the mass of Venus here and by a preliminary
determination of the mass of Mars from Mariner IV and

the mass of Mercury from observations of the minor planet,
Eros. In Table 1 the "best" set of constants available at

this writing (January 1967) is listed along with its

sources, but it is quite likely that further modifications

will be required within a few months--a reasonable time

interval considering the progress being made.

The masses of the outer planets are based on recom-

mendations of Clemence from his study of the subject.

Before beginning a discussion of the constants, it is

important to realize that there are three basic problems

in celestial mechanics which necessitate a system of

constants in the first place. These are:

1. The problem of describing the heliocentric motions

of the planets (planetary theory).

2. The description of the geocentric motion of the

Moon (lunar theory).

3. The description of the size, shape and orientation

of the Earth in space.

The third problem is necessary because astronomical
observations are made from the environment of the

Earth, and the location of the observer in space is impor-

tant for an accurate representation of observations. Also

a description of the Earth's gravity field is important to

the study of the motions of the Moon, artificial Earth

satellites, and space probes, and so certain principles

from the field of Geodesy must be introduced in the

discussion of this third problem. However, only concepts

needed to explain the IAU constants and their astro-

nomical implications will be introduced here. This is

because we are interested in the Earth only as an obser-

vational reference system and make a distinction between

constants necessary to describe this reference and con-

stants necessary for a geodetic study of the Earth.

In the next three sections, each of the basic problems

given in the foregoing will be taken up, in turn, as they

pertain to the system of constants. In this way it is hoped
that some motivation for the selection of constants will

be provided and consequently that the entire system

will be more easily understood.

A. Planetary Motions

Let r_ be the heliocentric position vector of a planet

of mass m_. Then the differential equations of motion

Table 1. Values for astronomical constants

as of January, 1967

"rA

c

A

a_

J_

GE

n*(_

P

E

N

Constant Value Source

Lincoln Lab.499.004785 q- 5

X 10 -6 sec

299792.5 ___ 0.5 km/sec

149597892 ± 250 km

6378.160 -I- 0.080 km

0.0010827 ___ 0.3

X 10 -_

398601.3 -t- 0.8

km3/sec 2

81.3001 + 0.0013

2.661699489 X 10 -6

_ 5 )< 10 -16sec-1

5026"39 ± 0:2

23 ° 27' 08:26 ± 0:1

9:210 ± 0."01

IAU (1964)

c _'A

IAU

IAU

Ranger probes

(Ref. 6)

Marker II

IAU

Morgan and Oort

(Ref. 12)

IAU

IAU

Auxiliary Constants

Constant Value Source

Solar parallax, r Q

Gravitational

constant, G

Heliocentric

gravitational

constant, G5

Mass of Sun, S

Ratio of mosses

of Sun and Earth

Ratio of masses

of Sun and

Earth -q- Moon

8".794174 ± 0:00011

(6.673 ± 0.003)

X 10 .23 km 3 sec -2 gm -1

(132712.50 ± 0.66)

X 10 -6kin 3sec -2

(1.9888 ± 0.0009)

X 1033 gm

332945.5 ± 1.8

328900.0 ± 1.8

arc sin (ae/A)

Heyl (Ref. 13)

k2 A3

GS/G

GS/GE

GS/GE(i + j,)

Mass Ratios of Sun to Planets

Planet Volue Source

Mercury

Venus

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

6005000 ± 18000

408505 ± 6

3098600 ± 600

1047.44 ± 0.02

3499.1 ± 0.4

22930 ± 6

19070 ± 21

400000 ± 40000

Robe and Francis*

Mariner II

Null**

Clemence (Ref. 8)

Clemence (Ref. 8)

Clemence (Ref. 8)

Clemence (Ref. 8)

Clemence (Ref. 8)

*Private communication; value is preliminary and is from 1966 reduc-
tion of normal places for minor planet Eros.

*,*Private communication; value is from reduction of Doppler tracking data
from Mariner IV.
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that describe the motions of the system of 9 planets are

d_r, _ k_(l+mi)_+ k-_ rn i

/ = 1,2,...,9 (4)

where the unit of mass is the mass of the Sun, the

vector r_j is equal to rj- r_ and the asterisk on the

summation sign means that the case where j = i is ex-
cluded from the sum.

These equations will represent the motions of the

planets, within the accuracy of current observations,

with the exception of two small effects. The first is a

small correction to the perihelion of Mercury because

of relativistic perturbations, and the second is a pertur-
bation in the heliocentric motion of the Earth-Moon

system because of the motions of both the Earth and

Moon about their center of mass or barycenter. How-

ever, for a consideration of constants required to repre-

sent the planetary motions, Eq. (4) is quite satisfactory,

especially if r_ for the Earth is taken as the position of

the Earth-Moon barycenter. As for the actual solutions

of the equations, they are exceedingly complicated and
will not be discussed here. For the inner planets, solu-

tions are obtained by forming approximate analytical

solutions by the methods of general perturbations. The

solution for the five outer planets has been obtained by

numerically differentiating the equations directly (Ref. 14).

The important point with respect to Eq. (4) is that the

only constants required to specify planetary motions are
the masses m_ and the constant of proportionality k.

However, in compiling a system of constants the stand-

ard procedure is to list the planetary masses in a sep-

arate table and not to include them in the list of pri-

mary constants. Therefore, the discussion of heliocentric
constants is limited to a specification of k. Of course its

value will depend on the units chosen for length and

time and so it is important to define these units precisely.

Note that the unit of mass has already been specified

as the mass of the Sun. As the result of a precise defini-

tion of units, the analysis given in this section will also

involve the constants s, c and A. Thus, the two defining

constants in the IAU list and two of the ten primary con-

stants are specified by a consideration of planetary
motions.

1. Unit of length. The basis for the value assigned to k

is the determination of Gauss (Ref. 15) in 1809. He chose

as a unit of length the mean heliocentric distance of the

Earth from the Sun and the unit of time was selected as

the mean solar day. Then he evaluated k by means of

Kepler's third law which would follow directly from the

integration of Eq. (4) for the Earth-Moon system if the

perturbation by the other planets were neglected. Even

with these perturbations, Kepler's third law still holds on

the average, and today certain systematic effects of the

other planets could be included in it by using the results

of the analytical theory of the Earth's motion. However,

Gauss used the third law in its two-body form as follows:

e-' - (5)
• k_(1 + rr_)

Actually it is better to use the mass of the Earth-Moon

system in Eq. (5), rather than just the mass of the Earth,
because it is the Earth-Moon barycenter that most nearly

follows two-body motion. However, Herrick states (Ref.

7, p. 28) that it is not clear whether Gauss made the

distinction. At any rate we are interested only in the

numerical values assigned to the period Pe of the Earth's
revolution and to the mass me. Since Gauss took ae as

his unit of length, it is unity by definition. His values

for Pe and me are

Pe = 365.256, 3835 days

me = 1/354, 710

and the resulting value of k, the Gaussian gravitational

constant, is

k = 0.017, 202, 09895

which agrees with the value in the IAU list.

Now the values for both Pe and me have been im-

proved since Gauss evaluated k in 1809, and if his units

were retained, it would be necessary to compute an im-

proved value of k every time new information was ob-

tained on the period and mass of the Earth-Moon system.

Instead of this procedure, the IAU in 1938 decided to

adopt k as a fixed constant at the value given by Gauss

and in the process abandon the Earth's mean distance

as the unit of length. In effect, the fixing of k defined the

unit of length basic to computations in celestial me-

chanics. Thus the IAU now calls k a defining constant

in that it serves to define the astronomical unit of length

(a.u.). Note that it has units of a.uY'-' day -1 (solar

mass)-1/2.

2. The unit of time. Now the units of mass and length

have been completely specified and all that remains is to
select some unit of time. The use of the day has not been
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carefully defined up to this point. It is clear that any unit
of time must be based on some natural time interval

which can be observed either directly or more realistic-

ally, through a highly accurate theory with observations

spread over many decades. The first natural unit of time

selected for astronomical work was the period of rotation

of the Earth. However, in recent times the non-uniform

rate of the Earth's rotation has been recognized, and so

a simple statement about the period of rotation as the

unit of time is insufficient without also giving the epoch

associated with that period. However, an accurate theory
for the rotation of the Earth does not exist, and even if

one chose a rotation rate at some epoch, it would be

impossible to relate this natural interval of time to ob-

servations made at times separated from that epoch. The
calibration of a clock in terms of the Earth's rotation rate

at one time cannot be related through theory to some
defining rotation rate an another time.

Therefore, the natural standard of time used in astron-

omy since 1960 is not the rotation of the Earth but the

revolution of the Earth-Moon system about the Sun. In

this way, time calibration is based on the theories of

celestial mechanics rather than on theories of the rotation

of the Earth. More precisely, the standard for time mea-

surements is the tropical year which is defined as the

interval between successive crossings of the equator by
the Sun as it goes from the southern to northern hemis-

phere. By observing the Sun, either directly or indirectly

through other bodies in the solar system, it is possible to

empirically determine the length of the tropical year in

terms of some arbitrary clock units used for timekeeping

(e.g., the resonance frequency of the cesium atom). How-
ever, this length is not a constant for two reasons. The

first is that the period of the Earth's orbit is not constant

because of perturbations by the other planets. The second

reason is that the point of crossing, the vernal equinox,

is not fixed with respect to the stars because the Earth

is undergoing precession and nutation as it rotates in

space. Therefore, the reference for time is arbitrarily

chosen as the instantaneous tropical year at the beginning

of 1900. The instantaneous tropical year is derived from

the angular rate of the mean Sun on Jan. 0, 1900, 12h0.

Once the tropical year (1900) has been adopted as the

basic unit of time, as the a.u. was the basic unit of length,

then other more useful time intervals, for example the

ephemeris second or ephemeris day of precisely 86400 sec,

can be defined as some fraction of the tropical year

(1900). This is exactly what the IAU has done in adopting

a value for s, the number of ephemeris seconds in 1

tropical year. Actually, this number of 31,556,925.9747 sec

had been adopted earlier by the Comit4 International

des Poids et Mesures in 1957 (Ref. 16). Again, it is be-
cause the theories of celestial mechanics are so accurate

that it is possible to determine the length of the tropical
year (1900) by making observations several decades later.

At present this interval is determined in units of one cycle
of oscillation of cesium for zero magnetic field. With the

definition of the ephemeris second given by the constant

s, the number of cycles in one ephemeris second is

9,192,631,770 -+- 20 (Ref. 17) which represents the stand-

ard for all timekeeping. In Section IV-C-3 we will delve

into the observational aspects of timekeeping in more

detail. For the present we are concerned only in the

implications with respect to the IAU constants.

Commission 4 of the IAU is currently considering the

fundamental unit of time. It seems likely that at a future
date the basic unit will be defined in terms of an atomic

frequency instead of as an astronomical frequency, the

revolution of the Earth-Moon system about the Sun.

3. The constants A and c. If we were concerned only

with theory, there would be no need for the velocity of

light c. However the primary purpose in constructing

theories of planetary and lunar motions is to compare the
implications of the theories with actual observations.

Thus the speed of propagation of the electromagnetic
signal used by the observer is essential for an accurate

representation of his data. The importance of c to the

representation of Doppler tracking data is clear from the

derivation of Section IV-B. However, as far as the astron-

omer is concerned, since the units of length and time are

clearly defined, he is really only interested in c in units

of a.u. per ephemeris sec. Therefore, there is a strong

argument to include c (a.u./sec) or its inverse r,t

(sec/a.u.) as a primary constant. The recent direct mea-

surement of r_ by Ash and Shapiro, to almost 10 signifi-
cant figures emphasizes this argument. However, the

IAU has chosen to do otherwise and their alternative of

making r,, a derived constant will be clarified in a

moment.

Still, suppose that rA were selected as a primary con-

stant. Then, is anything else required to represent optical
and radio observations of solar system objects? The an-

swer is in the negative, unless one insists on using some

laboratory unit as an alternative unit of length to the

a.u. In fact, an inspection of the IAU constants reveals

that the meter is used as the common unit of length.

Therefore, it is necessary to have a clear definition of

this admittedly extraneous unit of length. The simplest
approach would be to do as in the case of the definition

of the second and adopt some defining constant as the
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number of meters in one a.u. Clearly, this is analogous

to adopting s, the numt)er of ephemeris seconds in one

tropical year, and of course it is perfectly satisfactory
within the framework of astronomy; but such a definition

of the meter would come into conflict with that used by

the physicist. Before 1960 the meter was defined as the
distance between two lines engraved on a platinum-

iridium bar, the International Prototype Meter; but since

1960 the meter has been defined as exactly 1,650,763.73

wavelengths of the orange-red line in the spectrum of

Krypton 86, the unperturbed transition between the levels

2p,,, and 5d_,. It is necessary to be consistent with this
definition whenever the meter is used as the unit length,

and for this reason the IAU has selected c (meters/see)

as a primary constant. There is significance in the fact

that the velocity of light in laboratory units is the only

primary constant that also qualifies as a physical constant

measured entirely by laboratory equipment. In effect, c

(meters/see) allows an expression of astronomical results
in units of the meter as defined by the orange-red Kryp-

ton 86 line.

As pointed out before, the constant r_, the number of

light-seconds in one a.u., is basic to the representation of
astronomical observations. Now with the addition of the

constant c (meters/see) the number of standard meters

A in one a.u. can be computed by the formula

A = c r, (6)

Clearly, any two of the constants in Eq. (6) can be called

primary and the third will automatically be classified as
a derived constant. The IAU has chosen A and c as the

two primary constants, even though rA is more funda-
mental to astronomical observations.

The determinations of the constant c have been

summarized by Herriek (Ref. 7, p. 110-114), and it ap-

pears that Froome's value as obtained with a microwave
interferometer (Ref. 18) is the most reliable. The IAU
has followed the 1963 recommendation of the Interna-

tional Union of Pure and Applied Physics in adopting a

value for c which is essentially Froome's value.

B. Lunar Motion

The constants introduced in the previous section are

sufficient to describe planetary motions in units of the

meter and the ephemeris second if the masses of the

planets are given in solar mass units. Now the additional

constants (GE, t_ and n_' ) necessary to represent the mo-
tion of the Moon are explained in terms of that motion.

12

Although theories of the Moon's motion rely on com-

plicated transformations of coordinates and approximate

solutions to the equations of motion through the methods

of general perturbations, it is still valid to discuss the

problem in terms of a much simpler formulation in in-

ertial cartesian coordinates. Then, an insight into the

parameters which inffuenee the lunar ephemeris can be

gained by considering this more basic form of the equa-
tions of motion.

With respect to the nature of the motion, it is sufficient

for this discussion to restrict the equations to the solar

terms only. Because the lunar ephemeris is expressed in

geocentric coordinates, all that is involved is the relative

motion form of the three-body equations of motion with

the Sun as the perturbing body. The solution of this three

body system is referred to as the main problem in lunar

theory and additional perturbations caused by planetary

and oblateness effects are treated separately in the

theories.

The three-body equations of motion are given in units

of meters and seconds by

d2lg

dt 2 G(E + M)-fi + GS \r_e r( :_]
(7)

where G is the universal gravitational constant (m 3 see -2

gm -1) and E, M and S represent the masses of the Earth,

Moon and Sun, respectively in grams. The position vec-

tors r¢¢ and r_, represent the selenocentric and geocentric

coodinates of the Sun, and r is the geocentric position of

the Moon. As in planetary theory, the masses always

occur with G and are combined with it into a single

constant. Thus, the proportionality constant in the two

body term of Eq. (7) can be expressed in terms of the

IAU constants GE and _ = M/E.

G(E + M) = GE(1 + _) (8)

To obtain GS, all that is required is to convert k_(a.u2

day -2) to units of m 3 sec -'2 with the constant A and the

number of seconds in a day (86400 see day-l).

k 2 A 3

GS = (9)
(8640o) 

Also the vectors r¢_ and r'_ can be expressed in terms of r

and the baryeentric coordinates r' of the Sun which are

available from the theory for the solar ephemeris.
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1
----r' r (10)

r¢_ 1 +

' r'+ _ (11)

The purpose of writing the expressions of Eq. (7)

through (11) is to show that the equations of motion for

the Moon depend only on GE, _, A, k 2 and the solar

ephemeris r'. Thus, the solution of the equations will also

depend on these parameters and in addition will require

six arbitrary constants of the motion. The introduction of

planetary perturbations will not add any other constants

besides the masses of the planets in solar mass units, and
the small oblateness effects can be handled with the

parameters Is and ae discussed in the next section.

The sidereal mean motion n* of the Moon has not been
required to specify the lunar motion by the preceding

arguments. Therefore, there remains a question as to why

it is included as a primary constant in the IAU list. The

reason is that it can be measured to ten significant figures

and is at least two orders of magnitude more accurate

than the lunar ephemeris itself. Thus, the standard pro-

cedure is to remove one degree of freedom in the selec-

tion of arbitrary constants for the motion, and instead to

apply a constraint to the ephemeris such that the mean

motion (1900) is a constant given by n__.

In practice the invariability of n* in the lunar ephem-

eris can be assured by choosing the Moon's geocentric

mean distance a¢, derived from Kepler's third law, as a

parameter in the ephemeris. The third law for lunar

motion is given by

a¢ = F., F.GE(1 +- _),1 _/'_ (12)

where F2 is a factor which comes from lunar theory and

which accounts for solar perturbations on the lunar mo-

tion. The IAU designates a¢ as a derived constant and

gives F2, the value 0.999093142 (Ref. 8, p. 102).

C. Earth Constants

In the preceding two sections, the IAU constants re-

quired to construct planetary and lunar ephemerides have

been introduced, and it has been shown that no addi-

tional constants are required for this purpose. Now the

remaining constants which are needed to describe the

location of the observer in space are taken up in two

groups. The first group consists of the parameters ae and

12 which are intended to roughly describe the shape and
size of the Earth and to serve as a basis for a detailed

description of its gravity field. The second group consists

of the last three primary constants in the IAU list and

can be interpreted as specifying the orientation of the

Earth with respect to the coordinate systems of the lunar,

solar, and planetary ephemerides.

1. The constants a_ and 12. For use in Celestial Me-

chanics, the constants ae and J: are best understood in

terms of the Earth's potential function U which is usually

expressed as an infinite series in spherical harmonic func-

tions. With the notation recommended by the IAU Com-

mission No. 7 on Celestial Mechanics (Ref. 19), the
function U is written

U = 1 + -- P_"*(sin/3) (C,,.m cos m x + S ..... sin m x) (13)

where r is the geocentric distance, P_ is the associated

Legendre polynomial, fl is the latitude and x is the longi-

tude. The coefficient J2 is representative of an alternative

notation where In -- - C,, o and for the case where the

expansion is in terms of only the zonal harmonics (m =0),

the potential is usually written in terms of J, as follows:

U =_GE 1- I, P,(sinfl)
7' _1:2

(14)

The coefficient ]1 is eliminated by taking the origin of
coordinates at the center of mass of the Earth.

Both expansions for U reveal that the Earth's mean

equatorial radius a, is nothing more than a convenient

scale factor in the description of the gravity field, and if

one chose to define a new harmonic coefficient equal

to 1na"_, then the constant a, would not occur at all. Thus,

if we were only interested in defining U, there would

be no real concern that the constant a, be an accurate
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representation of the actual mean equatorial radius. In

fact the only significant usefulness in a reasonably accu-

rate value for a_, at least for astronomical work, is to

provide a scale for a reference ellipsoid which will permit

a first approximation to the geocentric coordinates of

observatories and tracking stations. Thus, the IAU defines

ae in terms of an actual mean radius, but as the equatorial

radius of an ellipsoid of revolution that approximates the

geoid.

The other geodetic constant I2 is called the dynamical

form factor for the Earth and is simply the coefficient in

Eq. (11) applied to the Earth. It is called dynamical be-
cause it occurs in the exterior potential and is determined

from the motions of artificial Earth satellites. Also, it is

possible to derive the shape of an ellipsoid of revolution

by assuming an equal potential surface with parameters

GE, ae and ]2. Thus, J.., is a form factor in a sense, al-

though the derived flattening of such an ellipsoid will not

necessarily agree with a geometrically determined flat-

tening for the reference ellipsoid approximating the geoid.

Of course even for the dynamically determined ellipsoid,

the associated potential involving GE, ae and ]2 is insuffi-

cient to represent the motions of artificial Earth satellites.

What is needed is enough terms beyond J_ to adequately

represent the actual exterior potential of the Earth. In

this sense, the additional harmonic coefficients are much

like the planetary masses needed to define the potential

field of the solar system and in a similar fashion are listed

separately from the primary and derived constants. Al-

though the IAU does not include a listing of the coeffi-

cients in their system of constants, such lists have been

compiled. For example Anderle (Ref. 20) has determined

all the coefficients through the sixth order from Doppler
observations of satellites and includes the seventh zonal

coefficient as well.

2. Constants of precession and nutation. The three
constants which describe the orientation of the Earth in

space are the precessional constant p, the obliquity of

the ecliptic e and the constant of nutation N, all three

given at the epoch (1900). It is not immediately obvious

why only three constants are needed to describe the
orientation and motion of a coordinate system fixed in

the Earth when the dynamics of rigid body motion gen-

erally results in six arbitrary constants, for example, three

Eulerian angles and their rates at some epoch to. The

simplification for the Earth occurs because two of the

principal moments of inertia are assumed equal. This

removes one degree of freedom. A second is removed
because the fixed inertial coordinate system is taken coin-

cident with the actual Earth-fixed coordinate system at

14

the epoch. The third degree of freedom is the rotation

rate of the Earth, which is included in an observational

sense in the procedures of timekeeping (see Section

IV-C-3).

The three constants determined from observation are

p, the constant of precession, which is the speed of the

general precession in celestial longitude, the obliquity of

the ecliptic E which is the angle between the poles of the

ecliptic and equator, and the constant of nutation N

which is the amplitude of the principal term in the nuta-

tion in celestial longitude. This term is produced by the

periodic motion of the Moon's node on the ecliptic and

has the same period, approximately 18% years. The in-

corporation of these three observationally determined

constants into a description of the orientation of the

Earth in space is given by formulae in Ref. 21, pp. 28-31.

The details are not reproduced here.

It is interesting to note that in the IAU list of constants,

only the constants p, E and N are not changed from the

values used by Newcomb, even though Morgan and Oort

(Ref. 12) have determined p to be about 0'.'8 larger than

the IAU value. Clemence (Ref. 8, p. 100) discusses the

reasons for not changing p. They have to do with the

reduction of star positions to a common epoch for the

measurement of proper motions. Comparison of recent
astrometric observations of a star with those made some

50 years ago is greatly simplified if both observations
were reduced with a common value of p, even if it is not

the best available. Of course this sort of argument is

just an extreme case of the general situation for the con-

stants; for astronomical purposes, they should not be

changed at frequent intervals.

D. Effect of the Constants on Computational Procedures

The differential correction of the astronomical con-

stants is formulated within the framework approved by

the International Astronomical Union (IAU) in 1964 (Ref.

8) as described in Section III. There are, therefore, two
constants which are absolutely not subject to correction.

These are s, the number of ephemeris seconds in I trop-

ical year (1900), and k, the Gaussian gravitational con-
stant. Their values from Section III are

s = 31556925.9747 sec

k = 0.01720209895 a.u. _/2 (day) -1 (solar mass) -1

The constants s and k define the fundamental units used

in the solutions for the constants with the conversion
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between units of ephemeris days and seconds given by p = 5025:'64 (precessional constant, 1900)

1 day = 86400 see

The unit of mass is the solar mass and the unit of length

is the astronomical unit (a.u.). The IAU list of primary

constants includes the velocity of light c in meters per

sec. For the purposes of determining constants from

tracking data, it is proper to consider c as a fixed con-

stant which defines the meter as a secondary unit of

length. Therefore, the IAU value is treated here as a

defining constant along with s and k.

c = 299792.5 km/sec

Whenever laboratory units are used in this and other

sections, they are always kilometers, grams, and ephem-
eris seconds. However, when a value A of the a.u. in

kilometers is determined from the data, it should be

understood that this is only a convenient way of expres-

sing the radar measurement of TA, the number of light

seconds in one a.u. The value of A is directly proportional

to the adopted value of c through the relation A = c r,_

(Eq. 6) where ra is the constant actually determinable
from the radar data.

Within the computer program constructed for the

reduction of the data, it is possible to correct the follow-

ing IAU constants to satisfy a least-squares fit to the
observations. The values of the constants are those

adopted by the IAU.

A -- 149.600 X 106 kin (astronomical unit, a.u.)

1z = 0.0010827 (dynamical form-factor for Earth)

GE = 398603 km3/sec2(geocentric gravitational constant)

= 1/81.30 (Moon-to-Earth mass ratio)

The Mariner II data are insensitive to reasonable correc-

tions to the constant J2. The use of the other three

constants in the differential correction procedure is de-

scribed in Section V. The other primary constants are

held fixed at the values given below.

ae --- 6378.166 km (Earth's mean equatorial radius)

n*- 2.661699489

X 10 -6 sec -_
(sidereal mean motion of Moon)

E = 23 ° 27' 08:'26 (obliquity of ecliptic, 1900)

N= 97210 (constant of nutation, 1900)

The value of ae differs from that of 6378.160 km given

by the IAU, but it has been adopted by NASA for their

trajectory calculations (Ref. 22). The difference of 6 m

is insignificant in comparison with the IAU limits

(6378.080 to 6378.240 km) on the true value of a¢ (Ref. 8).

The value n*, as given, is assured by the use of Brown's
lunar theory as a basis for the JPL lunar ephemeris

(Ref. 23) which has been used in this work. That the three

constants p, _ and N take on the IAU values can be

verified by comparing the formulas for precession and

nutation in the JPL trajectory program (Ref. 24) with

those in the explanatory supplement to the ephemeris

(Ref. 21). All computations of the Mariner II orbit are

accomplished with this trajectory program.

Not all of the derived constants in the IAU list are

of interest in the reduction of the Mariner I1 data, The

fundamental importance of r,_ has already been men-

tioned. Similarly, the Doppler data from a probe gravi-

tationally dominated by the Sun are capable of yielding

a value for the constant of the lunar inequality L. This

results from a measurement of the mean linear velocity

VL of the Earth about the center of mass or barycenter of

the Earth-Moon system. In terms of other astronomical

constants, VL is given by

where

V,, = L n* a.u./sec (15)
¢

L- t* a¢
1 + _ A (16)

* is so accurate, on the order of 10 sig-Thus because n¢
nificant figures, the constant L is measured directly and t*

is derived from Eq. (16). However, the mean lunar dis-

tance a¢ is itself a derived constant and another rela-

tionship for a¢ is required before L can be expressed as a

function of/, and other primary constants. This is (Ref. 8,

p. 102)

a¢ = F.,I GE(I + _) I1/a• 2 (17)
n¢

JPL TECHNICAL REPORT 32-816 15



where

F2 = 0.999093142

As far as the actual computations of the Mariner II orbit

are concerned, an adjustment of the derived constant a_

is accomplished by scaling the JPL lunar ephemeris by

a constant Re,_ rather than by the equatorial radius ae.

This is done for computational convenience only. The

JPL ephemeris is constructed by evaluating the Brown

Improved Lunar Theory (Ref. 25) and then by convert-

ing the results to rectangular coordinates (Ref. 28).

Therefore, by applying a conversion factor Re,_ to the

rectangular coordinates, the entire ephemeris is converted

to kilometers. An alternative procedure would be to

multiply the terms in the sine parallax by a constant to

produce the derived value of sin 7r = ae/ac and then to

apply the constant a_ to convert the ephemeris to kilom-
eters. Instead the value of the mean sine parallax

(sin _ = 3422':54) adopted in the Brown Improved Lunar

Theory is left unchanged and Re,, is computed for a given

mean distance a_ by the formula

3422.54 )Re_= 206264.806 a¢ (18)

For the IAU constants, the derived value of R .... is

---_// 8422.54 )iq .... \ 206264.806" (884400) = 6878.327 km

which is also the value recommended by JPL (Ref. 28,

p. 2).

The constant of the parallactic inequality Pc, which is

also given as a derived constant by the IAU, is not ap-

plied to the JPL lunar ephemeris. Thus the longitude of

the Moon does not differ from the given in the Improved

Lunar Ephemeris (ILE) because it is the ILE tables

(Ref. 25, Table 3) which define the JPL ephemeris. The

constant Pc (term 21 in the ILE listing) has been changed

from -124':785 as given by Brown (Ref. 26, Section

266) to --125':154 in the ILE of 1954. The IAU value of

--124'.'986 is probably accurate to at least 5 significant

figures, so the longitude of the Moon in the JPL ephemeris

is in error by about 0'.'15, or, equivalently, about 280

meters. Of course this figure represents the amplitude of

a periodic term with a period of about 29.58 days, or,

more precisely, the synodic month. A 280 meter periodic

error in the Moon's longitude does not affect the

Mariner II data except for a negligible contribution to

the determination of the lunar inequality. The determina-

tion of t* is based on an average linear velocity of the

Earth about the Earth-Moon barycenter, where the aver-

age occurs over the period of a month. Therefore, a

small periodic error of the same period should essen-

tially be averaged out, Also any gravitational attraction

of the Earth and Moon as separate bodies is extremely

small because all useful Mariner II data occur after eight

days from injection into the Earth-Venus transfer orbit.

At the time of the first useful Doppler observation, the
solar attraction is already 85 times the attraction of

the Earth-Moon system.

The recent work of W. J. Eckert on a further improve-

ment in the lunar ephemeris would eliminate many

errors present in the ephemeris used here. However, the

effect of using Eckert's improved ephemeris should be

negligible as far as the Mariner II data are concerned.

Another derived constant of importance to the

Mariner II reduction is the heliocentric gravitational con-

stant GS(km:_/sec "_)which enters into the calculation of

the Mariner II trajectory. In Section III-D, the use of

laboratory units in the formulation of the equations of

motion is explored in detail. For the purposes of this

discussion, it is sufficient to simply recognize that GS is

related to the Gaussian gravitational constant k and the
astronomical unit A as follows:

GS = (86400) -2 k _A:' (19)

Again for the IAU value of A, the derived value of GS is

GS = 1.327,181,07 )< 1011 km3/s 2

Values for the planetary masses are also required in

the computation of the Mariner II orbit. The JPL tra-

jectory program used here assumes the following ratios

of the Sun's mass to that of the planet.

Mercury 6110000 Saturn 3499.1

Venus 408589 Uranus 22930

Mars 3098600 Neptune 19070

Jupiter 1047.44 Pluto 400000

The values are in agreement with recommendations of

Clemence (Ref. 8) except for Mars where preliminary
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reductions of the Mariner IV data have been taken into

account.*

E. Basis for Corrections to the Constants

The importance of the Mariner II data to the system

of astronomical constants lies in an independent deter-

mination of A, _ and the mass M_ of Venus in units of the

Sun's mass. For purposes of relating this determination

to other work in the field, the framework for astrodynamic

constants analysis established by Herrick (Ref. 7) is used.

In this system, for example, the conversion of a.u.

length units to kilometers is

_" = A(1 -4-_) km/a.u. (29)

where A represents some standard value, in particular
the IAU 1964 value, and _" is a relative correction term

A

determined from recent observational data. Thus, A will
/k

be subject to error. Herrick gives for A the value

(-7 ±13)X 10 -G although he has recently raised this

number to reflect the Ash and Shapiro value of the astro-

nomical unit. One of the advantages of this method of

handling the constants is that corrections like _ are di-

mensionless. All corrections and uncertainties are in this

way expressed on a relative or percentage basis, and

various constants can be compared immediately as to
their relative accuracies. The value of ± 13 X 10-6 asso-

ciated with _' indicates that A is good to about 4.8 sig-

nificant figures. For a further discussion of At', see Section

V-D.

Similarly, the other two constants determinable from

the Mariner II data can be expressed in the forms

= 7(1 + 9) (21)

= M (1 + (22)

Because of the way in which the computer program is

organized to solve for the lunar inequality, the constant

obtained from the least squares solution is not _ but the

*Private communication with G. W. Null, Jet Propulsion Labora-
tory, Pasadena, California.

selenocentric gravitational constant k_ = GM(km3/sec2).

g_ gm

The numerical values associated with Eq. (20), (21), (22),

and (28), before the solutions of Section V are intro-

duced, are given by

A = 149.6 X 106km

M,_, = 1/408589

_ = 1/81.g0

k 2 = 4902.87
grn

= (--7 ±13) )< 10 -8

A

M, s = (0 ±250) X 10-8

"_ = (0 ±129) X 10-8

2kgm = (--5.3 ± 120) X 10-6

2 "
The value of kgta is obtained from t_ and the geocentric

gravitational constant (k _. = GE) according to the formulas

and

k;,.= t&_ (24)

(25)

The formula for k _ is

k_,, = k_, (1 + 2kg,) (26)

The adopted k"ue is the IAU 1964 value and _g_ is based

on the determinations of kg, from Ranger space probes

to the Moon (Ref. 6).

k z = 898608 km3/see 2
ge

= (-s.3 ±2.o) x lO-O

We now collect the necessary formulas required for an

a,nalysis of the effect of the determinations of _, M ;_and

k_ on the system of astronomical constants. In all of
this, it is important to remember that a value for the

speed of propagation c was adopted (c = 299792.5 kin/s)

and when results are given in units of the km, the basic

unit is the light-second instead. The constant c is simply

an agreed upon conversion factor.
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A summary of this section, in the form of formulae for

future reference, is given in the following list. (Cf. Ref. 7)

_, = ._ - 0.037× 10-o (27)

2g_,= 3P,+ 0.81× 10-,_ (_s)

/k

2 2 A, 1 t_
a_= T '_ - + ._ (so)e -5-n_ 3 1+_

1 _+a_-_ (31)
_- i+_

P_ - 1 -/2

/Ns = 2i. - S - OOl× 10- (33)

Numerical values in these formulas are also from

Ref. 7 and are consistent with the IAU 1964 list of con-

stants. For completeness, other relevant numerical values
and uncertainties follow.

oo

A =149.6X10 _

2 -= (--7_+13) X 10 -(_

G = 6.673 X 10-_
A

G = (0.0 -+-0.4) X 10 -3

k_._ = 1.327380 X 1@ 1
A

2kg_ = (-20 ±39) X 10-_

k z = 398 603
ge

/,,

2kge = (-5.3 ±2.0) X 10-6

S -= 1.9889 X 10 -33

= (-0.03 _+o.4)x lo-_

r.l = 499.012

Art = (--7-+-14) × 10 -B
,..,,$

P( = -- 124"986
/N

P_ = (0.0___20) X 10 -6

az = 384,400

_ = (-1.8 _+0.8) × m -°

L = 6".'43987

/x

L = (0.0 ±120) X 10-_

n_' = 2.661699489 × 10-G

/%.,.

n_ = (0.0000_+0.0002) × 10 -'_

- 1/81.30

= (0.0 _+120) × 10- °

k _ = 4902.87
grn

,%

2kg,,, = (0.0 _+ 120) X 10 '_

R .... = 6378.327
/N

R .... = (-1.8 _+0.8) X 10-"

F. Determination of the Constants

Before beginning a discussion of the detailed methods
used to obtain values of astronomical constants from the

Mariner II data, it is advisable to consider in general

the relationship of the observed Doppler curve to the

system of constants and to appreciate, in a descriptive

sense, the nature of the determination of the masses and

the astronomical unit from that curve. Clearly, since the

orbit of the Mariner II probe depends to some degree on

all the constants, and because the Doppler data can be

interpreted as measurements of range rate, which in turn

depend on the orbit, there is the possibility of being able

to determine any of the constants. However, as in all
observations of natural and artificial bodies, the orbit of

the body in question is particularly sensitive to some

of the constants, and is, moreover, practically insensitive

to reasonable corrections to other constants. The pur-

pose, therefore, of this discussion is to show that an

adequate representation of the Mariner II Doppler data,

where an adequate representation is defined in terms

of removing all measurable systematic effects in the

Doppler residuals, can be accomplished only by using

relatively accurate values of the masses of the Moon and

Venus and the astronomical unit. Then selecting values

for the three constants such that their respective sys-

tematic effects are removed from the Doppler residuals,
constitutes a determination of the constants. In all the

intricacies of the least-squares procedure used in the re-

ductions of Section V, it is important not to lose sight

of the fact that the final goal of the analysis is simply

this selection of the constants and that the procedure

is used primarily in order to systematize the determina-

tion and reduce it to numerical operations.

In the following, each of the three constants will be
considered in turn and the nature of their determination

will be discussed. It will be shown that the mass of the
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Moon is derived from the monthly motion of the Earth

about the Earth-Moon barycenter and thus is dependent

on the Doppler curve throughout the cruise portion of

the flight where the Sun dominates the orbital motion.

Also, the mass of Venus, as expected, is determined from

the Doppler curve obtained during planetary encounter,

while the astronomical unit depends on forcing con-

sistency between the cruise and encounter data.

I. Mass of the Moon. In order to analyze the motion

of the Earth about the Earth-Moon barycenter and to

derive an approximate expression for the component of

this motion in the Doppler curve, consider the probe in

the cruise portion of the flight and assume that it and

the Earth are motionless with respect to the heliocentric

frame of reference. This removes the geocentric motion

of the probe as a contribution to the Doppler curve. Also

neglect the contribution from the geocentric motion of

the station about the Earth's polar axis. Then with the

angular velocity of the Earth-Moon barycenter given by

the sidereal mean motion of the Moon n_, the remaining

component/5_ in the Doppler curve caused by the bary-

centric motion is approximately

/SB = R,_ n* cos/3 sin(X - X_) (34)

where/3 and x are the geocentric celestial latitude and

longitude of Mariner II, _ is the longitude of the Moon

and R,_ is the mean geocentric position of the barycenter

given as a fraction of the mean distance of the Moon a_ by

_ t_ a_ (35)
RR 1+_

If R8 is expressed in units of the a.u., then it is called the

constant of the lunar inequality L = RJA. Again the

expression for AbRrepresents nothing besides the bary-

centric motion, and if all other contributions to the

motion are filtered out of the actual Doppler curve, then

what remains is capable of yielding a determination of

Rn and hence _ through a measurement of the amplitude

of the/b8 curve. In practice the filtering of all components

is accomplished simultaneously with the/58 component by

means of the least-squares procedure. However, con-

ceptually it is proper to think in terms of the determina-

tion of the amplitude of a periodic component in the

Doppler curve with a period approximately equal to the

Moon's orbital period. Note that the mean motion n_ of

the Moon can be considered perfectly known with

respect to the uncertainty in Rs. Also the latitude fl is

not constant and fortunately its variation over the dura-

tion of the Mariner II data allows its separation from the

constant lqs. If it remained constant, only the product/_

cos/3 could be determined.

With respect to the potential accuracy of the deter-

mination of RB, from which /_ can be obtained, it is a
well known statistical result that the error in the deter-

mination of the amplitude of a sine function from N in-

dependent samples of that function is given by _/2 _/v/N
where ,r is the measurement error. The cruise solutions of

Section V use about 1000 points with an assumed mea-

surement error of about 0.003 m/sec in range rate. There-

fore, the most optimistic error estimate of the amplitude

R_ n_ cos /3 would be about 0.0001 m/sec based on the
preceding formula. The function cos/3 is near unity and

thus the amplitude itself of the/58 curve is about 10 m/sec.

It can therefore be determined to about 0.001%, and

from Eq. (35) the mass ratio can be determined to about

the same percentage error. Actually the least-squares

solution of Section V gives an uncertainty about twice

this large which is nevertheless in excellent agreement

with the rough calculation performed in this section.

Note that before Mariner II, the uncertainty in _ from

optical observations was in the region of 0.04%, so the

tracking of space probes has improved its accuracy by

at least an order of magnitude.

2. Mass of Venus. The mass of Venus is determined

by the shape of the Doppler curve during the encounter

of Mariner H with the planet. This curve can be approxi-

mated quite accurately in the vicinity of encounter by

means of the velocity curve used for spectroscopic
binaries (Ref. 27, p. 859).

/5 ----V + K [cos(v + o_) + e cos _o] (36)

where V is the geocentric radial velocity of the planet,

v is the true anomaly in the planet-centered-orbit of the

probe, ,_ is the argument of the periapsis, e is the eccen-

tricity, and K is a constant given by

na sin i

K - (1 - e2) v* (37)

The inclination of the orbit i and the angle _o are given

with respect to a plane, "the plane of the sky," oriented

such that the Earth-planet line is normal to the plane.

Because the orbit of the probe about the planet is repre-

sented by a hyperbola, it is more meaningful to express

K as a function of the hyperbolic elements b = - a e_

and V® = [GMv/(-a)] v*. The semi-minor axis b in the
hyperbola is the distance of closest approach of the
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asymptotes to the mass-center at the focus. It is the

distance of closest approach of the probe to the planet if

the planet is massless and exerts no bending on the

encounter trajectory. The hyperbolic excess velocity V_

is the planet-centered-velocity of the probe at infinity, and

again, for a massless planet represents the constant veloc-

ity of the probe along the asymptote. In terms of these

parameters K is given by

GMv
K - b V_ sin i (88)

where GMv is the gravitational constant for Venus in units

such as m3/sec 2. Figure 2 shows a comparison of the

actual Mariner II geocentric range-rate curve and the

curve computed from Eq. (36) with the orbital elements
and V held constant at the values associated with closest

approach.

Now an efficient utilization of the encounter Doppler

curve is best achieved by adding as much information

as possible from the Doppler data outside the region of

planetary encounter. A determination of the heliocentric

orbit of the probe before and after encounter allows a

measurement of the bending of the trajectory and the

hyperbolic excess velocity V_. Also the orientation of the

hyperbolic orbit in space, and thus the orientation with

respect to the "plane of the sky," is determined. That this

information is easily obtained can be seen (Fig. 3) by

forming the planet-centered-velocity of the probe before

and after encounter by means of a subtraction of the

heliocentric velocity of Venus from the heliocentric ve-

locities of the probe. The angle between these two planet-

centered-velocity vectors is just the supplement of the

total bending angle, the magnitude of both vectors is V_

and the plane which they define is the plane of the orbit.

Of course, all of this is actually a two-body idealization

of the more accurate three body system, but it is suffi-

ciently realistic to show that the Doppler data outside the

encounter region can provide values for the parameters

V_, i, 0, and e with the eccentricity given as the inverse

of the cosine of one-half the bending angle. The constant

K in Eq. (36) can also be determined without the en-

counter data by using a modified form of Eq. (88).

K _ _V_ sin i (39)
_/e'-' - 1

Thus, the only unknowns remaining in the encounter

representation of/5 (Eq. 86) are the planet's radial veloc-

ity V and the constants GMv and the time of periapsis

passage T, which enter in specifying the true anomaly v
as a function of time through the hyperbolic form of

Kepler's equation. To show that these three remaining

constants can be obtained from an observed /5 curve of

the form of Eq. (86) and Fig. 2, a graphical method of
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solution is presented in the following, although the actual

determination of Section V uses the more rigorous least-

squares procedure.

The observed Doppler curve can be plotted as range-

rate/5 versus the time t. Also because K, _ and e are

known, a plot of/_ - V vs the true anomaly can be con-

structed from Eq. (36). Now at some point in the tra-

jectory, the function cos (v + _o) will take on either a

maximum value (+1), a minimum (-1) or both values

depending on the value of _oand the degree of bending.

In Fig. 2, the maximum value for Mariner II occurs about

one hour after encounter. In any case the two graphs

- V vs v and /_ vs t can be superimposed and the

maximum and/or minimum points on the two curves can

be made coincident by shifting the graphs in both the

ordinate and abscissa with respect to each other. Then

by reading the abscissas of both graphs, a one-to-one

correspondence between the true anomaly and time can

be established. The difference in the ordinates is simply

the radial velocity of the planet V. The point at which

v = 0 in the iust established v vs t curve defines the time

of periapsis passage T, and thus the only remaining

constant to be determined is the gravitational constant

GMv. One method of doing this is to numerically or

graphically differentiate the v vs t curve to obtain the

rate of the true anomaly at the periapsis point (v = 0).

Call this rate bz, and use the angular momentum integral

of the two body problem to obtain a formula for GM_

in terms of known quantities.

1 v:
GM, - (e - 1)-----_ b,, (40)

O_ course to express the mass of Venus in units of

mass of the Sun it is necessary to divide GMv by GS =
k2A 3 to obtain

M"_' = k s 5e (-_:-]? (41)

An interesting result of approaching the solution for the

mass in the foregoing qualitative manner is that it be-

comes apparent that the encounter doppler data yield a

value for GMv, not My, and that the latter quantity is

dependent on the assumed value of the astronomical unit

A in meters. This conclusion is supported by the actual

least-squares solutions for M_ in Section V. Only when

all the data, both cruise and encounter, are reduced for

values of MS and A does an independent determination

of A occur with a corresponding separation of M_, and A.

However, the nature of the determination of A is dis-
cussed in the next section.

3. The astronomical unit. As shown in the previous

section, it is not possible to determine the number of

meters in the astronomical unit from an encounter Dop-

pler curve alone. In addition, the sensitivity of range-rate

to reasonable variations in A is not great enough during

the three months of the cruise data to provide a solution.

However, the least_squares solutions of Section V show
that the combined data can determine A to the order of

500 km and separate it from the solution for the mass of

Venus. The purpose of this section is to offer some rea-

sonable justification for such a separation. Roughly, it

has to do with the importance of obtaining accurate

heliocentric conditions of Venus to assure consistency be-

tween the heliocentric orbit of the probe as determined

from the cruise data, and the planet-centered-orbit as
determined from the encounter data. One method of

varying the heliocentric conditions is to vary A, which in

effect scales the ephemeris of Venus as given in astro-

nomical units. The probe's heliocentric orbit, as deter-

mined by Doppler data taken during the cruise portion

of the flight, is in units of meters, say, and thus it is

necessary to obtain the correct conditions for Venus in

the same units by selecting a proper value of A. Also, in

Section V it is concluded that even more degrees of free-

dom in the coordinates of Venus are necessary to force

consistency in the data, and adiustments are made to the

ephemeris itself as well as to A. However the present
discussion is restricted to A and the multidimensional

correction of the ephemeris is left for the rigorous reduc-

tion. However, the arguments presented for the validity

of a solution for A can be extended, at least conceptually,
to the general situation of a full correction to the coor-
dinates of Venus.

The necessity for an accurate value of A is already

evident in the reduction of the last section, although in

determining the mass the value of A was assumed known

and its role in the reduction was neglected. Now, how-

ever, it is important to recognize that an inconsistency in

the reduction for V, GMv and the orbital elements can

arise in the following way. When the heliocentric velocity

vectors (m/sec) were converted to Venus centered vec-

tors (also m/see) it was necessary to use the heliocentric

velocity vector of Venus in the transformation of coordi-
nates. However this is available in a.u./see from the

ephemeris of Venus, and thus the ephemeris velocity

must be multiplied by A. Now after the hypothetical

graphical solution for V is obtained we have a value for

the geocentric radial velocity of Venus (m/see) which
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can also be computed in a.u.'s from the Earth and Venus

ephemerides. Therefore by forming the ratio V (m/sec)/V

(a.u./sec) a value for A is obtained after the solution

for V, GMv and so forth. Unless the value of A chosen
for the heliocentric to Venus centered transformation is

correct, there will be an inconsistency between it and the

value obtained after the solution. Of course, this discrep-

ancy can be removed by forming the difference in the
two values of A for various trial values of the A used

in the coordinate transformation, and by plotting this
difference vs A. Then, the A for which the difference is

zero corresponds to a determination from the combined

cruise and encounter data. Again, the procedure will not

actually be performed here, it serves only as a basis for

the analysis of the feasibility of a solution; but the

mass M_, A and the coordinates of Venus will all be

obtained simultaneously in the least-squares solutions.

IV. Methods of Data Reduction

The Mariner II tracking data consist of Doppler mea-

surements made at the Goldstone station of the Deep

Space Instrumentation Facility (DSIF) under the direc-

tion of JPL. Other stations in this facility, in particular

the one at Johannesburg, South Africa, also tracked

Mariner II, but the data were not of the same quality as

the Goldstone data. Only the Goldstone station was

equipped with an atomic frequency standard during the

Mariner II tracking period. Therefore, for the purposes

of this determination of the constants, only the Goldstone
data are considered.

The method of solution is that of weighted least squares

with a modification to allow the introduction of a-priori

information into the process. As in any least squares

solution it is necessary to compute residuals in the data,

and by convention the sense of the residuals is the ob-

served minus the computed (O-C) values. The adopted

procedure is to simply represent the Doppler measure-

ment as accurately as necessary by a mathematical for-
mula and then to form the O-C subtraction. The actual

measurement O is stored on magnetic tape. An accurate
representation of the data will involve considerations of

light-time, atmospheric refraction corrections and an in-

terpretation of the station procedure used to record the
time of an observation.

Practically all least squares data reductions in celestial

mechanics are accomplished by differentially correcting
nominal or standard values of the orbital and astronom-

ical constants to obtain the least squares solution for both

the orbit and constants. This procedure is unavoidable

because of the non-linear nature of orbital problems. In

some cases the orbit is unknown and approximate solu-

tions for a preliminary orbit must be developed which

use some part of the total collection of observations. For-

tunately, preliminary orbital elements for Mariner II are

available (Ref. 3) and we can proceed directly to the

differential correction. Therefore, the formation of differ-

ential coe_cients, which relate incremental variations
in the data to variations in the orbital elements and con-

stants, is a primary concern of this analysis.

A. The Method of Least Squares

The general problem of fitting a set of observations by

the method of least squares can be stated as follows.

Suppose that some variable z, in our case the Mariner II

Doppler data, is a function f(t) of the time t. For ex-

ample, the Doppler curve during the planetary encounter

period looks something like Fig. 4. Now measurements

of the function f(t) are made at discrete times, a few

points are shown in the figure, and the unavoidable situ-

ation is that the measured function f(t) will not be smooth.

However, we are interested in fitting to the observations

a smooth function g(x,t) of a multidimensional parameter

set x. This function is chosen to represent the theory
associated with the laws of celestial mechanics and the

Doppler representation. Thus, the parameters x will in-

clude the six orbital elements for the space probe and
also various constants such as the mass of Venus. The

only possibility of obtaining a meaningful determination
of the relevant astronomical constants is to choose the

function g (x, t) to account for all physical phenomena

inherent in the Doppler data. Of course, there is a family

of curves g (x, t) for various values of x, and the problem

is to find a particular parameter set x* which will approx-

imate the sampled function z-=-f (t) by the particular

function g (x*, t). The method of least squares chooses

the parameters x* which minimize the sum of squares of

t

Fig. 4. Curve g Ix, t) fitted to a set of data
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the vertical deviations of the measured points from the

curve g (x*, t). The deviations from the curve are called
residuals and for a set of n discrete measurements

_ = f(ti)(i = 1, 2, ..., n) at times t_, they can be com-

puted by the formula z_ - g (x, t_). Then the least squares

method is given in analytical form as the minimization
of the function S where

s -- _ [_, - g (x, t,)]-' (42)
i-1

The minimization itself is accomplished by setting the

partial derivatives of S with respect to each parameter in

the set x equal to zero and by solving the resulting system

of equations for x. In Section IV-A-l, the mathematical

details of the solution are explored further.

1. Weighted least squares and a-priori information.

A description of the use of the method of least squares

can be found in many standard texts in the field of

statistics. In addition Brouwer and Clemence (Ref. 28)

have specifically discussed the method from the view-

point of its application in celestial mechanics. The pur-

pose of this section, therefore, is not to explore the

method in detail but to take a very general approach

and show (a) that the least squares solution can be

conditioned by the introduction of a-priori information

on the parameters, and (b) that a repeated application

of the differential correction process can result in con-

vergence to the least squares estimate even when the

initial correction is outside of a linear region. These two

aspects of the method are not widely understood.

The approach of this section relies heavily on matrix

notation because it lends itself to general discussions of

multidimensional systems. In particular, we will reduce

the least squares problem to the numerical solution of a

system of n nonlinear algebraic equations in n unknowns.

The details of how the resulting equations expressed in

matrix form can be converted to an actual computational

procedure will not be included, but Ref. 28 contains an

excellent discussion of the computational steps involved

in obtaining the solution. One point should be made.

Simply because matrix notation is used in this strictly

theoretical approach, it should not be assumed that

"standard" matrix manipulation computer routines will

be adequate, either with respect to accuracy or efficiency,

in solving the particular problem of least squares. It is

necessary to investigate the accuracy and efficiency of

the computations at each stage of the solution rather than

reduce the numerical analysis to a series of matrix mul-

tiplications and inversions.

As a first step in the matrix development, consider an

expression for the sum of squares of the residuals. Let

the set of actual data be represented by a column matrix

_" and designate the set of parameters by x. Then the

computed values of the data are given by the matrix

function z(x). The notational convention is that lower

case letters represent column matrices and capitalized

letters represent rectangular and square matrices. Now

if the superscript T is used to indicate the transpose of a

matrix, then the sum of squares of the residuals can be
written

[_- z(x)] _ [_- z(x)]

where the transpose of a column matrix is a row matrix,

and, by the definition of matrix multiplication, the indi-

cated product results in a scalar quantity. In weighted

least squares each observation is multiplied by a scalar

weighting factor w before the sum of squares is formed.

This can be represented in matrix notation by the use of

a diagonal weighting matrix W with the square of the

weight situated on the diagonal element corresponding

to the observation which is to receive that particular

weight. Then, if the weighted sum of squares is the scalar

function S(x), we have

S(x) = [3 - z(x)F w[_- z(x)] (43)

At this point the concept of a-priori information on the

parameters can be introduced by recognizing that at least

some parameters, for example, the astronomical unit, are

not completely unknown, but that a-priori values x, some-

times called standard values, are available with an asso-

ciated estimate of their respective uncertainties. If these

uncertainties are arranged in the form of an a-priori
covariance matrix F_, and if the a-priori parameters them-

selves are treated as additional observations, then it is
sensible to add a function

(_"- x)TF_1(_"- x)

to S. The matrix F_ 1 is the weighting matrix for the addi-
tional observations _ and it may have off-diagonal

elements to account for any a-priori statistical correlation

between the parameters.
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From a statistical viewpoint the addition of the a-priori

term produces a combined estimate of the parameters,

where the combination occurs between previous deter-
minations of x and the one which results from the data

alone. Of course prior determinations of some or all

parameters can still be ignored by inserting zeros in the

matrix F) 1. Let the new least squares function with the

a-priori information be Q(x). Then

O(x) = S(x) + (_'- x) r P;1 (_'- x) (44)

With this definition of Q(x) the weighted least squares

method can now be reduced to the following statement.

Given a set of data _ and a mathematical representation

z(x) of those data in terms of a set of parameters x, find

particular values x* of the parameters which will make

Q(x) an absolute minimum.

Certainly a necessary condition for this minimization

is that at x*, arbitrary infinitesimal variations in x will

result in no variation in Q(x). Thus, the first variation

dQ(x) in Q(x) must be zero at x* for all variations dx.

Differentiate Eq. (44) with respect to x.

dQ(x) -- -2 dxrATW [_- z(x)] - 2 dx r "F-_ ('_- x)

(45)

where the matrix A is an array of the differential coeffi-

cients relating variations in the parameters to variations

in the data. It is defined by

dz = A dx (46)

The only way that dQ(x) can be zero for arbitrary dx is

for the matrix multiplying dx r in Eq. (45) to be null.

Thus Q(x) is minimized if the following system of equa-
tions is satisfied

ArW[ - z(x)] + - x) -- 0 (47)

The least squares problem has, as anticipated, been re-

duced to the solution of a system of non-linear algebraic

equations in x. Because the second variation d[dQ(x)]

of Q(x) is always positive, the solution cannot yield a

maximum value of Q(x). If the variation in A is neglected,
this second variation can be written as

d[dQ(x)] = 2 dxr(ArWA + P-_a)dx (48)

and since the matrix ArWA + F_ _ is positive definite, the

quadratic form of Eq. (48) is positive.

Any numerical technique that will yield the solution

x* to Eq. (47) is satisfactory in arriving at the least

squares solution. However, ff the Newton-Raphson method

is used in its multidimensional form, the resulting system

of linear differential correction formulae is precisely the

set of normal equations which are solved in the classical

least squares procedure. The advantage of approaching

the problem from the viewpoint of the solution of a

system of equations given by Eq. (47) is that now the

repeated application of the classical differential correc-

tion process is meaningful. If the Newton-Raphson

method converges, it will converge to the solution of

Eq. (47) and hence to the value of x that minimizes the

function Q(x).

Designate the estimate of the solution x* at the nth

iteration by x (n). Then the improved estimate x (n+l) is

given by

(A WA + (x''+'' - x'n') -- - z(x(°))]

+ F; _ _- x '')) (49)

By neglecting the dependence of the matrix A on the

parameters x, what is really generated is a modified

Newton-Raphson procqdure, where the first derivative of

the function in Eq. (47) is only approximated by Eq. (48).

Of course, if the matrix A is independent of x, then no

iteration is required since the solution is obtained by a
linear correction to the initial estimate of x*. However,

this is not the case for practically all problems in celestial

mechanics, and successive iterations by the modified

Newton-Raphson scheme are often required.

For comparison purposes the general result Eq. (49)

can be reduced to the system of normal equations usually

handled in least squares;,,Remove the effect of the a-priori

information by setting F_ 1= 0, and let Lxx = x (_) - x (°),

the differential correction to the preliminary orbit and

constants given by x ¢°). Also, let _xz = z- z(x(°)), the

residuals based on the preliminary orbit. Then

(ArWA) Ax = ArW Az (50)

which is nothing more than a matrix expression for the

famihar normal equations. The matrix A represents the

coefficients in the equations of condition, Eq. (46).
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All solutions for the Mariner II orbit and constants

carried out in Section V are accomplished by means of

Eq. (49), and the uncertainties and correlations in the

resulting parameters x* are computed under the assump-

tion that (ArWA + F-_I)-1 is the covariance matrix for

the parameters. This is valid if W and U_1 are the inverse

covariance matrices for the data and a-priori parameters,

respectively, and if there are no sources of uncertainty

outside of the data and a-priori parameters. Further statis-

tical interpretations of the matrices in Eq. (49) are

best made in conjunction with the actual solutions of
Section V.

SPACECRAFT

.(,,,)

TRANSMITTER RECEIVER

Fig. 5. Transmission of radio signal

B. Representation of the Radio Tracking Data

Before residuals can be computed in a least-squares

procedure, it is necessary to construct a sufficiently accu-

rate mathematical representation of the radio observa-

tion. The first step is to write an expression for the output

of the electronic equipment itself in terms of transmitted

and received frequencies. Then these frequencies can be

related through theoretical considerations of the Doppler

effect. Finally, methods for including effects of atmo-

spheric refraction, light-time and the alignment of the

station time with ephemeris time (ET) and universal

time (UT1) will have to be described.

The observational equipment consists of a transmitter

and 85-foot parabolic antenna at site $1 (Fig. 5) which

transmits a signal at frequency vt, to the spacecraft P

where the signal is multiplied by a constant k and then

transmitted to a second radar site Sz equipped with a

receiver and again an 85-foot parabolic antenna. The

received signal at frequency rob is compared electron-

ically with the multiplied transmitted frequency and the

difference in frequencies is accumulated in a cycle count

device over some period of time r. Thus a single obser-

vation consists of the following three numbers

Nv--An integer number of cycles accumulated by a
cycle count device which records the number of

positive zero crossings of the differenced electro-

magnetic signals.

r -- The count-time or the interval of time over which

the cycle count is accumulated.

tob _ The station time associated with the end of the

count-time interval.

Actually to make the scale of the observation indepen-

dent of the count interval, the cycle count is divided

by r when the observation is recorded. Appendix E con-

tains a listing of the actual Mariner II data used in the
solutions of Section V.

Call the normalized Doppler observation f and desig-

nate the number of cycles counted in the infinitesimal

time interval t to t + dt by F(t). Then the total count is

obtained by integrating over the interval to_ - r to tob.

_ Nv _ 1 [,ohf F(t)dt (51)
7" "r .1t,.,_r],

The function F(t) is written

F(t) = Vo + K'(k'vt_ - rob) (52)

where klvtr - rob represents a Doppler shift in the ob-

served frequency with respect to the frequency k'vt,

transmitted at the spacecraft. The constant frequency vo
is added to establish a reference for no relative motion

and is taken large enough to assure that F(t) is never

negative. It would not be possible to interpret a negative

frequency with the cycle count device. The constant K' is

also a part of the electronics at the receiver.

Rather than use standard quadrature formulas for the

evaluation of the integral of F(t), the function is ex-

panded in a power series about the mid-point t,, of the

count interval (tob - r <--t <_ tob) and the result is inte-

grated term by term. The purpose of this expansion is

to avoid an evaluation of F(t) at several points within

the interval and instead to evaluate all quantities at the

single time tin. Thus

1 F(t_,) (t-tin) _ + ...V(t) = F(t_) + F(t,,) (t-t,,) + -_

(S3)
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and the integral of F(t) is

f tob f tm+1/27

F(t)dt -- [F(tm) + [7(t_) (t--t,,_)
oh_ T J t m-1/2r

+ 1/2F(t,_)(t--tin) 2 + ...]dr

(54)

or upon performing the integral and substituting the

result into Eq. (51), the expression for f becomes

1.2

t = e(t.,) + TT + ..., (55)

The representation of the observation f is now reduced

to a formation of the function F(t) and its even ordered
derivatives. We will return to a consideration of the

truncation of the series for F after the function F(t) has

been specified.

1. Doppler frequency shift. The Doppler formula used,

for example, in the determination of radial velocities of

celestial objects from the shift in optical spectral lines

is simply ±v/v = /5/c; where t5 is the relative radial

velocity or range-rate of the source of the radiation with

respect to the observer. For the Mariner II radar data,

the combination of the range-rate of the spacecraft with

respect to both the receiver and transmitter on the Earth

results in a doubling of the frequency shift to order 1/c.

Therefore, the frequency term in Eq. (52) is of the form

Because of the nature of the radar data, it is necessary

to include some of the 1/c 2 terms in the expression for

the Doppler shift if the inherent accuracy of the data

is to be fully exploited.

Consider first the transmission from the spacecraft at P

to the station at $2 and denote an inertial origin or frame

of reference by 0 (Fig. 6). From the theory of relativity

the proper time drp associated with the spacecraft is

given by Ref. 29

s_ 2_ dt_ (57)

wheres sp is the speed of P with respect to the origin of O,

_p is the gravitational potential energy at P and c is the

constant speed of propagation of the signal. This formula

26

p

o

s_

Fig. 6. Position of station $2 and spacecraft P in
inertial space

states that if an observer at rest with respect to O

measures a time increment dtp, then the corresponding

increment measured in the frame of reference of P is drp.

Actually the gravitational term is only approximate,

although for the Schwarzschild metric the next term is
of the order of 1/c 4. It should be noted that by including

relativistic terms in the derivation of the frequency shift,

it is unnecessary to consider separately the effects of the

aberration of electromagnetic waves. These terms in the

Doppler shift are analogous to the aberration effect in

optical angles where the correction can be considered
as a relativistic transformation of the angles to the

observer's frame of reference.

Similarly to P, the proper time for the station Sz is

d_ = 1- -_ + c_ ] dt_ (58)

Now the number of cycles n_ transmitted by the space-

craft in the interval rp to rp + drp is vp(rp)drp while the

number nz received at Sz in the interval r2 to r2 + dT_

is v2(r2)dr2. In order that the number of cycles trans-
mitted and received be the same, it follows that n_ = nz

and
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or to terms in 1/c 2 or

L
(59)

The derivative dtp/dt2 can be obtained by considering

the finite propagation of the signal over the distance

from P to S_. Thus

tp = t, P_ (60)
c

where pz is the magnitude of the vector P2 defined by

p2 = rp (tp) - rz (t_) (61)

The vector rp (tp) is the inertial position of the Mariner II

spacecraft when it transmits the signal at tp and r2 (tz) is

the inertial position of the station $2 at the time of

reception t2. Strictly in accordance with the theory of

relativity, Eq. (60) is not quite correct because in a

gravitational field the speed of propagation is not ex-

actly c. Also, the Euclidean length p2 does not take

account of any bending of the signal's path in the field.

However, this gravitational effect is negligible with

respect to the Mariner II data, and for the present the

only relativistic terms in the Doppler equation result

from the transformation to proper time by Eq. (57) and

(58).

Now from Eq. (60), the derivative dtp/dt2 is

dtp 1 dp2
dt.2 =1--- - (62)c dt2

and from the definition p_ -- Pz " P2, the derivative of p2
with respect to tz is

dp_ _ dp_
P_ _ - P2" dt_ (63)

where from Eq. (61),

dp2 _drv dtv dr2

dr2 dtv dt2 dt2

dp2 dtp
dt2 " = _p (tp) _ - __ (t2) (65)

Combine Eq. (62), (63) and (65) and solve for dtp/dtz.

1 + P---& • r2(t_)
dtp _ p2 c

dt_ 1 + P___L . r(tp)
/95., c

(68)

The vector r_(t2) and rp(tp) represent the inertial veloci-

ties of the station and spacecraft respectively at the times

indicated by their arguments.

To obtain the ratio of received to spacecraft transmitted

frequencies all that is required is to substitute dtv/dt2

from Eq. (66) into Eq. (59). Thus

-i+ i i
- -

1+ sz-- COS 02
C

>( (67)
I+ _p-- cos 0 v

c

Where the angles 03 and 0p are defined by the scaler

products in Eq. (66) and sz and &p are the magnitudes

of the velocity vectors ih(t2) and i'p(tv), respectively.

The other leg of the radar transmission from the trans-

mitting station S, to the spacecraft P can be obtained

immediately from Eq. (67) by replacing the subscript

p by 1 for the transmitted frequency v, and the subscript

2 by p for the received frequency v_ at the spacecraft.

Also to keep the sense of the range vector p always

directed toward the spacecraft, the sign in the p expres-

sions is changed. Then the ratio v_ (rp)/v_(tt) is given by

v'v(r_') [1+ 1 i ]) - - - -

1 s_
----COS¢_

c

× (68)
(64) 1- _--2-1

C COS qbl
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where the angles e_ and _1 are defined by where

p_ cos _ = pi" i-_(t_) (69)

p_i cos 4_ = pa"/'. (t_) (70)

and pl is the magnitude of the light-time corrected range

vector Pl.

p, = rp (tp) -- r, (tl) (71)

All that remains in the specification of the Doppler shift

is to identify the frequencies in the theoretical expres-
sions with the actual frequencies in the Doppler system.

This is accomplished as follows:

vl(ri) _ vtr -- the transmitter frequency S 1

v,,(_p) _ k'v'p (r_,)--the frequency transmitted by the
spacecraft as a multiple of the re-

ceived frequency v'p(assume instan-
taneous event)

v.2(r,.,)_ rob -- the received frequency at $2

The required frequency ratio for the Doppler formula

(Eq. 52) is Vob/ktVtr which can be written in terms of the

theoretical frequencies as

rob _ _(_2) v'p(_)
_,r _p(_) _(_1)

(72)

which is just the product of Eq. (67) and (68). Again

carry the relativity terms to order 1/c 2 and the resulting

expression for the function F (t) is

F(t_') = v° + K'k'vt_I1 k'vt_v°b.]
(73)

_o_ -[i+ 1 i (@2__>,)]k,%% _ (_ - _) - c--7-

0
0,)

(74)

The numerical values of the constants v0 and K'k" are for

Mariner II.

Vo = 10 _ Hz

K'k' = 32.359550561

Note that independent values of K' and k' are not required

in the mathematical representation of the Doppler data.

The transmitted frequency vt_ is given numerically by

1,'tr = 29.66 X l0 G + Av Hz

where ±v may differ for various batches of data, but

always lies within the interval 8100 to 9200 Hz. Thus, in
addition to the three numbers mentioned previously as

characterizing a single observation, it is also necessary to

specify the value of ±v associated with each observation.

The resulting formula for the Doppler shift (Eq. 74) is
easier to understand if the terms of order 1/c are cleared

from the denominator. This can be accomplished by mul-

tiplying numerator and denominator by the factor

(1-_--L_ c°s0P)(l+c h--2-1c°s_)c

to obtain

rob -- 1 + 1 ._ 1 (,I,, -- ,_,)
k'_. _ (s, - _) - -j-_,

_2SP COS _2 COS Op) (1 -- Pl Sl_p )c'-' --c-- c2 cos _ cos _p

*2 *2 /(l_Sp )( s_c---7 cos z Op 1 - -_- cos 2 ff_

(75)
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The range rates /91 for the transmitter and /52 for the

receiver are defined by

p,bl = P_"b, (76)

and

p2/5 = p2.b2 (77)

where the range vectors are defined in Eq. (61) and (71)
and the range rate vectors are simply their time deriva-
tives.

b, = b, (t,) - _, (tl) (78)

= ;,, (t,) - (79)

Of course Pl and p2 are the magnitudes of p_ and p._.,

respectively.

Now from Eq. (75) it is immediately apparent that to

terms in 1/c the Doppler frequency ratio is given by

vo_ -- 1 P, + b= + 0(1/c _) (80)
k'v t ,. c

which agrees with the expected result written down at

the beginning of this development. (Cf. Eq. 61) How-

ever, the additional terms in Eq. (75) are important, and

they cause considerable complication in computing ac-

curate Doppler data. In fact it is worthwhile to expand

Eq. (75) in powers of 1/c and to drop terms which are

negligible with respect to the accuracy of the Mariner II
data. At the same time a transformation from inertial to

geocentric coordinates can be made in orde- to cast the

Doppler representation in a more convenient coordinate

system. The expansion of Eq. (75) and the associated

transformation of coordinates is a straightforward matter

although the derivation is somewhat tedius. Therefore,

only the result is given here and the algebra and arith-

metic required to justify the computational formula is
given in Appendix A. The result is

v°-----L-b= 1 -- /3' +P"
k/vtr C

1 (/_162 +/_ + H) (81)-Fc-- ;-

where

H : r' (tp)'[_a R2(t2) - P'--2-I Rl(tl) ]p191

+-T1 _o_(R{. cos 2 ,1,!,_- R{ cos -__{) (82)

and o,s is the angular rotation rate of the earth, R is the

geocentric position vector of a radar station, R is its mag-

nitude, R is the geocentric station velocity, q¢ is the

geocentric station latitude, and r'p is the geocentric posi-

tion of the Mariner II spacecraft. The range-rates _b'1

and/_" are evaluated with geocentric coordinates.

2. Representation of cycle count. Now that the Dop-

pler shift is available to sufficient accuracy, it is possible

to return to the frequency function F(t) defined by

Eq. (52) and express it in terms of the topocentric and

geocentric quantities of the previous section. Then, the

cycle count data represented by f can be evaluated for
particular estimates of the Mariner II orbit and Goldstone

station locations. The next step in the process is to apply

corrections and then form O-C residuals. From Eq. (52)
and (81), the function F(t) is

F(t)=vo + K'k" vt,_[_, +c /5, 1 .._ -_-(p,p._, + [9__+ H)]

(83)

For the evaluation of the actual normalized cycle count f,

the integration of the function F(t) is accomplished by

Eq. (55) where F(t) is evaluated at the midpoint t,, of

the count interval (tob--r <--t <--tob). The second and

fourth derivatives of F(t) can be obtained quite accu-

rately by neglecting the l/C- terms in F(t). Then

F(t) = K'k' vt_ (_. + _'2) (84)
C

F ''v' (t) = K'k" vt_ (p_,V, + p_,V)) (85)
C

For Mariner II, the F aV) (t) term is negligible and the

final formula for representing Doppler cycle count is

It3 1 .. .o 1
T 2

f(tob) = .o + K'ld "'---L_c'_ + [9; -- c (P,P2 + P'2 + H) + _ (_', + }5"=)
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It is understood that all terms in Eq. (86) are evaluated

at t,_ = tob- 1/2 T. In addition it is still necessary to

solve the light time problem because the known time t,_

in Eq. (86) is actually the time t2 in the'notation of the

previous section. Therefore, the times tl and t_ are un-

known until the light time associated with the particular

value tm of t_ois determined. This correction is developed
in Section IV-C-1.

Finally the term "/5"is obtained from the orbit and sta-

tion locations through the topocentric range p, range

rate _, acceleration _ and jerk "lb"vectors. The expressions

can be developed by successive differentiation as follows

p_ = P_'Pi (87)

p,b, = p," fi, (88)

p,#, + = + b, (89)

p_ + 3/3_ = p_ .'15, + 315_ ._5_ (90)

C. Corrections to the Doppler Data

The Doppler cycle count recorded at the station $2

could, in a sense analogous to angular observations,

properly be called apparent cycle count. However, there

is a distinction in that the doppler data is simply a num-

ber, independent of coordinate systems, and it makes no

difference whether the computations of the previous sec-

tion are performed with respect to the true equator and

equinox of date, or with respect to any other equator

and equinox. Perhaps the easiest conceptual approach to

an understanding of the role of the coordinate system is

to assume that all vectors required to specify the data

are referred to the mean equator and equinox of 1950.0.

Actually, in practice this is useful also, because the nu-

merical integration of the equations of motion for the

probe are best performed in the 1950.0 system (Cf. Sec-

tion IV-D). Thus with the coordinates of the probe given

in 1950.0 mean coordinates, it is only natural to express

the other vectors, namely the station location vectors, in

this system also. At this point the dependence of the

Doppler data on precession and nutation becomes obvious.

Because the Earth is not a perfect sphere homogeneous

in layers, other bodies in the solar system produce torques

on it with the result that a coordinate system fixed in

the earth undergoes precession and nutation. The station

coordinates represented by the position vector R must

be transformed to the mean 1950.0 coordinates to yield

the required vector R19_0. The earth-fixed coordinates or

equivalently the components of R are given by

X -- R cos 4,' cos 0 (91)

Y = R cos qS' sin 0 (92)

Z = R sin _' (93)

where R and ¢' are the geocentric radius and latitude of

the station respectively and 0 is the local sidereal time.

The interpretation and computation of 0 are included in
Section IV-C-3.

The conversion from mean-coordinates of 1950.0 to

mean coordinates R ...... of date is accomplished by a
matrix rotation.

R ...... = AR_, ..... (94)

where the elements of A can be deduced from the ex-

pressions given in Ref. 21, pp. 30--34.

aH= 1 - 0.000,296,97T" - 0.000,000,13T :_

a,2 = -a,_,l : -0.022,349,88T - 0.000,006,76T _

÷ 0.000,002,21T _

a_ = --a3_ : --0.009,717,11T + 0.000,002,07T _

+ 0.000,000,96T :*

a_z = 1 -0.000,249,76T _ - 0.000,000,15T _

a23 : a_._ = --0.000,108,59T _ - 0.000,000,03T _

a_3 = 1 -0.000,047,21T z + O.O00,O00,02T 3

The time interval T is the number of Julian centuries of

36,525 days past the epoch 1950.0.

The conversion from R .... to true coordinates R in-

volves the nutation and is again expressed as a matrix
rotation

1_ = N 1_ .... (95)

The elements of the matrix N are computed from tables

on pp. 44 and 45 of Ref. 21 which yield corrections to

longitude (Sxr,) and obliquity (BE). Then the matrix N is
given by

I 1 -8_I, cos _ -8,/, sin E7N= _,I, cos_ 1 --_E 1 (96)_x_ sin g _e 1
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where e is the mean obliquity of date. The form of the

matrix N in Eq. (96) is an approximation to the rotation

from mean to true coordinates and is given on page 48
of Ref. 21.

The complete transformation from mean coordinates

of 1950.0 to true coordinates of date is obtained by com-

bining Eq. (94) and (95).

R = N A RI_O (97)

or the inverse is

R_9_o = A -1 N -1 R (08)

Thus, the station location can be referred to the inertial

1950.0 coordinate system in which the orbit is computed.

Other significant corrections which must be included

in the Doppler representation are light-time, atmospheric
refraction and the conversion of the station time to

ephemeris time ET and universal time UT. The problem

of a correction caused by the aberration of light was

dealt with in the derivation of the Doppler frequency
shift where a distinction was made between an inertial

time interval and a proper time interval at the station.

1. Light.time correction. In the computation of the

cycle count data, three times are important (Cf. Section

IV-B-l). The first, from a ray tracing viewpoint, is the

time tl when the transmitting station $1 sends a signal to

the spacecraft, the second is the time t_ at which the

probe receives the signal and the third is t..,when the sig-

nal is received at the second station $2. Now the only

time that is known is the time of reception t2, and the

times tp and tl must be obtained by means of a light
time correction of the usual form.

tp = t_ - P---2-_ (99)
¢

t, = tp -- P_L (100)
e

where c is used to convert from the units of the computer

program to units of light seconds. The ranges pl and p2

are themselves functions of t_ and t_ as well as t_, and so

some iterative procedure is used to find the unknown

times. The usual procedure is to apply the method of
successive substitutions with the iteration formula left

in the form of Eq. (99) and (100). At each iteration the

ranges are computed as the magnitudes of pz = rp(tp)

-r_(t2) and p_ = rp(tp)-rl(t 0. Since the time t2 is known,

it is unnecessary to recompute r2(t2) after the first evalu-

ation of pz and the most reasonable method of finding

tl and tp is to completely solve Eq. (99) for tp by iterat-

ing with successive values of rp(tp). Then with tp known,

the spacecraft position does not require modification in

the successive computation of pl for Eq. (100). Only the

location rx(tl) of the transmitter changes from iteration
to iteration.

The actual mechanization of the iterative procedure to

take advantage of the logical design of the computer

program used in this work, can be found in Ref. 4, pp. 12
and 18.

2. Atmospheric refraction. As is the case with most

high resolution astronomical data, the fact that the elec-

tromagnetic signal must pass through the Earth's at-

mosphere before it is detected introduces a degradation

in the information content of the signal. The Mariner II

Doppler cycle count data are no exception, although the

effect is limited to atmospheric refraction and the asso-

ciated shift in the Doppler frequency. The procedure

followed here is to remove a large portion of the atmos-

pheric effect by computing the frequency shift for a

standard atmosphere. The remaining error caused by

departures of the actual atmosphere from the standard

one at the time of observation is a limiting factor in the

inherent accuracy of the Mariner II data. However, the

results of this section indicate that the atmospheric limit

to accuracy is below that of the measurement resolution
for Mariner II.

Before the correction itself is developed, it will be

shown that the refraction effect on counted doppler data

can be expressed as the difference in the effect on range

p at the beginning and end of the count interval. The

range is defined as the propagation time multiplied by

the speed of propagation c.

If the 1/c _ terms in the function F(t) are neglected

(Cf. Eq. 83) then the integral for the cycle count data

can be evaluated analytically.

1 f tob F(t)dt
f(tob)= T j ob_,

_ K'k'vtrl- , , 1= vo. T L + p_(tob) -- pa(tob - *) -- p2(tob - r)

(lot)
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Now the refraction correction _rf(tob) to the cycle count

data is written in terms of the correction _p to range

at the beginning and end of the count interval. No dis-
tinction is made between the individual corrections in

pl and p2 because the transmitter and receiver at the

Goldstone site are only 10.7 km apart. Therefore, the
correction formula is

,,rf(tobl-2r.,k,V.c [A pItobl-,,rp(to - (lO21

To obtain the correction A_p, the path of a ray is

numerically traced through a standard atmosphere such

that Fermat's principle is satisfied. Then of all possible

paths the ray follows the one which makes the time of
transmission a minimum. As a model for the atmospheric

refraction we choose an index of refraction n which is a

function of only the altitude H above the surface of the

Earth and which obeys an exponential model as follows:

n = 1 + (no -- 1)e -mH° (103)

where Ho is the scale height. The constants chosen for

the Mariner II radar propagation are

no - 1 = 3.40 × 10-'

Ho = 7.315km

The details of the ray tracing are carried out in Appen-

dix B and the result for the range correction is plotted

as a function of observed elevation angle in Fig. 7. As

expected the correction increases rapidly for low eleva-

tion angles and amounts to 26 meters at 5 deg above the
horizon. At the zenith, where the classical correction to

elevation angle is zero, the range correction amounts to
about 2.4 meters.

In the actual computation of Arp, an interpolation

formula is used as an approximation to the numerically

determined curve of Fig. 7. Its accuracy can be evaluated

by comparing the few points plotted in Fig. 7 against

the curve from the ray tracing. The interpolation formula

is

arp = 1.8958 (sin y + 0.06483) -14 meters (104)

where 3, is the elevation angle.

Finally, a combination of Eq. (102) and (104) yields

the refraction correction to the cycle count data.

32
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Fig. 7. Refraction correction to range for exponential
atmosphere

±_f = T [sin _, (to_) + B] 1'4 -- [sin-/(tob --r) + B] a'4.

(lO5)

where

A = (0.0018958) 9.(K'k')vt_ (106)
e

or

and

A = (0.40926 X lO-6)Vtr (107)

B = 0.06483 (108)

The constants K'k' and vt_ are given in Section IV-B-1.
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As in the computation of f itself, all quantities are

evaluated at the midpoint t_ of the count interval, and

the elevation angles at each end are approximated by

1
7(tob) = 7(t,,) + -_- r 9(tin) (109)

1 "t
7(tob --T) ----V(t,) -- T _ _( m) (110)

It is instructive to expand Eq. (105) to the first order

in r 7(tin) by means of the definitions in Eq. (109) and
(110). The result is

Arf : __ 1.4A_(tm)cos 7(tin)
[sin 7(tin) + B]_'" (111)

Thus, as the spacecraft rises above the station's horizon

the Doppler data is shifted to lower frequencies; but

later, around the time of meridian crossing, the correc-

tion goes through zero, and as the spacecraft sets the

data are shifted to higher frequencies. An upper bound to

the frequency shift is given by

1.4A_
I±,.fl < B_.-----7- (112)

and with ), set equal to the rotation rate of the Earth ¢o_

as an upper bound, and Vtr : 29.67 X l0 G Hz, the corre-

sponding upper bound on Ar[ is

] a'f I < 0.9 Hz

The longest count interval used in the Mariner II data is

10 min and the accuracy of [ is then about 0.005 Hz.
Thus in the worst case, the refraction correction is about

180 times the measurement error, and for most of the

data an accuracy of two significant figures in the correc-

tion should be sufficient to represent the data. Because
of the rapid increase in the correction with lower eleva-

tion angles, the weights assigned to individual measure-

ments will be a function of elevation angle in the actual

data reduction (Cf. Section V), and data at very low

elevation angles will essentially be eliminated from the
solution.

3. Interpretation of statitm time. The meaning of the

time label associated with a cycle count measurement

has already been introduced in Section IV-B; but the

precise relationship of that time to the systems of time

used in modern astronomical work has, up to this point,

been ignored. A clear understanding of the station time

is required to accurately represent the position of the

Mariner II spacecraft and the station, both being vital to

the computation of the Doppler data; and because the

station location is fixed with respect to the rotating
Earth, while the spacecraft position is given as a function

of the ephemerides of other bodies in the solar system,

the time argument in the formulas of Section IV-B is

not only different for the two cases but in neither is it
the station time itself.

The first assumption concerning the interpretation of

time is that the station clock is synchronized with WWV

transmissions and a pseudo but uniform universal time

(UT). The station procedure makes this a fair assump-
tion, because the rate of the WWV transmission is made

available in bulletins published by the United States

Naval Ovservatory (USNO). Then the station sets the

rate of its own clock to the WWV rate which, during

the Mariner II span of data, defined one second of

WWV time as (9,192,631,770)(1 + 1.3 X 10-s) cycles of

the cesium resonance (see Ref. 30). Note that the deter-

mination of the ephemeris second is 9,192,631,770 -+-20

cycles of this resonance (Ref. 17), and thus the WWV rate

is slower than the rate of ephemeris time (ET). In order

to assure that the station time did not drift during the

Mariner II period from the WWV time because of errors

in setting the station frequency, periodic calibration

checks were made at the station by comparing the station
time with the WWV transmissions.

Therefore, there is considerable justification for assum-

ing that the time associated with the Doppler data is
WWV time or what is referred to as UT2C in the USNO

bulletins. However, before this time can be related to

the times used in the actual computation of Doppler data,

it is necessary to consider the definitions of the various

systems of time.

The universal times UT0, UT1 and UT2 are described
in Ref. 21. UT0 is the time determined from the meridian

crossing of stars of known right ascension where the

standard coordinates of the observatory are used in the

reduction. UT1 is the universal time corrected for polar-

wandering and is thus based on coordinates referred to

the true pole at the time of observation. UT2 is a

smoothed UT1 where periodic seasonal variations in the
rotation rate of the Earth are removed. The WWV time

(UT2C) is maintained at about UT2 by periodically incre-

menting UT2C and by changing the WWV rate at the

beginning of the year, if necessary. From January 1, 1961
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to June 30, 1965 WWV never differed by more than 0._15

from UT2, and in any case the difference was published

in the USNO bulletins covering those years. During the

time of the Mariner II data, UT2C was not incremented.

Atomic time A.1 is described in Ref. 17. It is a uniform

time with the second defined as the best determination

of the ephemeris second in terms of the cesium resonance

(9,192,631,770 ___20 cps). Thus within the accuracy of this

determination, the rate of A.1 is the same as the rate

of ET. The calibration of A.1 is accomplished such that

at 0h0m0 _ UT2 on January 1, 1958, the value of A.1 is
also 0"0m0 s.

As already pointed out in Section III, the ephemeris

second is defined by international agreement in terms of

the number of ephemeris seconds in i tropical year (1900).

An equivalent statement is that the rate of the mean Sun

(1900) defines the ephemeris second and it makes no dif-

ference whether we adopt the length of the tropical year
or the rate of the mean Sun as the definition of the rate

of ET. In order to establish a zero point for ET, a value

for the mean longitude of the Sun (1900) is also adopted.

Thus on January 1, 1900 at 12h ET the mean longitude L

of the Sun is taken to be 279°41'48'.'04 (Ref. 20). At a

later time T from this epoch, where T is measured in

Julian centuries of 36525 ephemeris days, the mean

longitude is

L = 279°41'48704 + 129602768713T + 17089T 2

(113)

The quadratic term in the expression comes from theory

and is the only coefficient subject to change if the theory

of the Earth's motion is improved.

If the longitude of the mean sun could be observed,

then the ephemeris time T could be determined by in-

verting the above formula. In practice observations are

made of the more rapidly moving Moon and the ephem-
eris time is determined at the instant of observation

from the observed position of the Moon. The assumption
here is that the motions of the Sun and Moon as deter-

mined from theory are gravitationally consistent. Thus,

either body can be used to determine T and the Moon is

selected to gain more resolution in the final result for ET.

Now it is possible to decide what times are required

for the computation of the Doppler data. Since the time

argument in all the ephemerides is ET, it is clear that

the Mariner II orbit will be given as a function of ET

also. Therefore when the probe coordinates are obtained

at time t;, the rigorous interpretation of this is that the

coordinates are for a time tp ET determined from a time

tob ET through the light time solution of Section IV-C-1.

Because tob is given in UT2C time, the correction

ET-UT2C is required to correct tob UT2C to tob ET.

The USNO bulletins give A.1 -- UT2C which except for

the zero point can be equated with ET - UT2C. How-

ever, by the definition of the calibration of A.1 (1958)
we can obtain ET -- A.1 as the difference in ET - UT2

at the beginning of 1958. It is assumed that the differ-

ence ET - UT2 at this time is 32._25, and therefore that

ET = A.1 ÷ 32_25 in the Mariner II reduction.

When the station coordinates are computed, the ephem-

eris time is no longer relevant because we are interested

in the station location in the coordinate system used to

locate the spacecraft. Therefore the non-uniform rotation

of the Earth is important. Equations (91), (92) and (93)

give the formulae for computing the station location in

terms of radius R, geocentric latitude if' and the local

sidereal time _. The latitude and longitude h of the

station are assumed given with respect to the true pole

of data. The local sidereal time is then given by

0 = 0o + ;_ (114)

where 0o is the Greenwich sidereal time expressed as a

function of UT. In particular, at least for Mariner II, the
universal time of interest is UT1 because this is what

locates the true Greenwich meridian of date, and hence

the station, in inertial space. The procedure for locating

the station in 1950.0 coordinates, for example, is the

following:

. Given the observation time tob UT2C, convert to

tob UT1. For the transmitting station the light time

correction must also be applied to yield tl. The

USNO bulletins give UT2 -- UT2C and UT2 - UT1
from which UT1 - UT2C can be obtained.

2. Compute the Greenwich local sidereal time 0o(UT1)

by formulas given in Ref. 21.

. Apply Eq. (91), (92), (93) and (114) to obtain the

position of the station in true coordinates of date.

Use values of if' and X referred to the true pole of
date.

4. Compute the mean coordinates (1950) of the station

by Eq. (98).
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To implement the corrections ET - UT2C and UT1

-UT2C as taken from tables in the USNO bulletins

(Ref. 30), polynomial interpolation formulas are used

which fit the USNO tables. For the Mariner II period,

they are given by the following:

F_T -- UT2C = 29.221675 + (0.12967819 X 10-7)t

(115)

UT1 - UT2C = -39.821720 + (0.20287233)4 10-6)t

-(0.25818216 X 10-x_)t2 (116)

where t is measured in seconds of time from 0h0m0 s on

January 1, 1950. Of course, these polynomials cannot be

used outside of the range of time encompassed by the

Mariner II data. The following table gives values of the

time corrections as computed from the polynomials.

Year Date (ohuT) UT1 - UT2C ET - UT2C

1962 Sept. 2

Sept. 12

Sept. 22

Oct. 2

Oct. 12

Oct. 22

Nov. 1

Nov. 11

Nov. 21

Dec. 1

Dec. 11

Dec. 21

0."016

0.014

0.011

0.009

0.006

0.000

--0.006

--0.012

--0.020

--0.026

--0.033

--0.039

348.406

34.417

34.428

34.439

34.451

34.462

34.473

34.484

34.496

34.507

34.518

34.529

Note that a failure to distinguish between UT1 and

UT2C in computing station locations, would result in a

drift of about 0._055 in the longitude of the station over

the time interval of the Mariner II data. This is equiva-
lent to about 21 meters in the Goldstone station location

and is significant with respect to the accuracy of the

Mariner II determination of the longitude.

D. Equations of Motion

The equations of motion for the Mariner II spacecraft

are expressed in mean equatorial coordinates of 1950.0.

They represent a sixth-order system of differential equa-

tions where only the coordinates of the spacecraft are

obtained by numerical integration. Coordinates of other

bodies in the solar system are stored on magnetic tape

and are provided by JPL (Ref. 23). The equations of

motion are expressed in the relative motion form (Ref. 31,

p. 161) which in vector notation are given by

dZrl2

dt s
r12 k 2 _ r2j rl]_kS(m1 + ms) -_- + _ mi 3 ÷ P2

(117)

By convention a position vector r_j represents the coor-

dinates of the jth body of mass m i with respect to the i th

body of mass mi. Thus, the first term in Eq. (117) repre-

sents the two body acceleration of the Mariner II space-

craft with respect to the primary body of mass m_. The

mass of the probe is 198.22 kgm and is negligible with

respect to the primary mass rex. Therefore, m2 can be set

equal to zero in Eq. (117). The second term in the equa-

tions represents the contribution to the relative accelera-

tion from other bodies in the solar system. For the

Mariner II orbit the primary body is either the Sun, the

Earth or Venus and the other bodies in the n-body system

are the remaining planets and the Moon. The third term

Ps represents perturbative accelerations on the spacecraft

which arise from forces aside from the gravitational

attraction of the Sun, Moon and planets. In particular P2

includes effects from solar radiation pressure on the

spacecraft and low thrust forces from the spacecraft's

attitude control system which operates by releasing cold

nitrogen gas through a number of jets. Because neither

of these non-gravitational forces has a significant effect

on the primary body, the form of P2 can be equated to

the inertial acceleration from solar pressure and low-
thrust forces.

If k s in Eq. (117) is set equal to the Gaussian gravita-

tional constant, the units are astronomical units, solar

masses and ephemeris days in the equations. However

the units used in the integration of Eq. (117) are kilom-

eters and ephemeris seconds and kZmi is combined into

a single factor GMi (km3/secS). The formula for k_s=GS
in the case of the Sun is given by Eq. (19) and the value

2 -- G 8of kg_- Mi for any planet whose mass M i is given in
solar mass units is

= (Gs) M, = (S6400)- ks A3 (11S)
g_ -'_

It is understood that the value A of the a.u. in km is

based on the adopted value of c because, as discussed in

Section III-A, the standard meter is of no consequence in

the mathematical representation of the tracking data. As
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an example of the equations expressed in km and see.,

consider the geocentric form and let the geocentric posi-

tion of the probe be given by r. Then

dt"- 7 g"\ ri_," 7_ +• ,, \%

+ k,,2 A3 _ M., i/r_k; _ r__ + p (119)
j=l J\r_,

where k" is the Gaussian constant in unit of seconds,

k" = (86400) -1 k. All singly subscripted vectors are geo-

centric and the doubly subscripted vectors can be formed

according to the convention that

r,,j = rj -- r (120)

Note that the lunar and solar terms have been separated

from the summation so that the indices i = 1, 2,..', 8

occur for all the planets exclusive of the Earth.

The position vectors in Eq. (119) and (120) are still

not in a form consistent with the ephemerides of the Sun,

Moon, and Planets. Only the lunar ephemeris is given in

geocentric coordinates and it is still necessary to scale it

by the factor R .... as discussed in Sections III and III-A

in order to obtain r_ in kin. Thus the ephemeris values

of r_, call them r_ (ephem), are converted to km by

r_ = R .... r< (ephem) (121)

where R .... is given by Eq. (17) and (18). For the lunar

ephemeris provided by JPL, the value of R_,, for the IAU

list of constants was given in Section III-A as (Cf. Eq. 18)

R .... = 6378.327km

Then with the notation of Section III-A,

where

/x

R .... = R ..... (1 + R_,,,) (122)

A

a ....= < (123)

/% ,_%

and _ is given in terms of kge and kg,_ by Eq. (29) and

(30). If _* is neglected because of its relatively great

36

accuracy, then _ is given by

A 2 1 _'ge + 2 ____e____.'_g,_ _ 0.31 X 10-" (124)
a_- 31+_ 31+_

Again since we are basing A on the adopted value of c, it

is not necessary to consider a correction c to c in any of the

equations. Now Eq. (124) gives, with 2kge = (-5.8 +2.0)
X 10 -_ and 2k_,_ = (0.0 ±120) X 10-%

= (-1.8 _+o.8) × 10-_ (125)

This is the value adopted in Section III-A. Thus our best
value of Re,_ is not R_m but instead 6878.315 km. The latter

number essentially reflects the deviation of the value

of k_ determined by the Ranger series from that adopted
by the IAU.

The basic ephemerides of the Earth-Moon barycenter

and the planets referred to the Sun must also be converted

to geocentric coordinates in units of kms. Not only is it

necessary to multiply all ephemeris positions by A, but

also the geocentric location of the Earth-Moon barycenter

is required in the conversion. In terms of the lunar position

re given by Eq. (121), the barycenter is located by the
formula

/z
r_ (126)

rn- l+t*

Then with the heliocentric ephemeris of the Earth-Moon

barycenter given by r®B (ephem) in a.u.'s, the geocentric
coordinates of the sun in kms are

I* Re,, r_ (ephem) - Aro8 (ephem) (127)
ro-- 1+/,

A planet with heliocentric coordinates ro, (ephem) in

a.u.'s has geocentric coordinates in km given by ri, where

ri = ro ÷ Ar®_ (ephem) (128)

Now all quantities in the geocentric equations of motion

(Eq. 119) have been specified with the exception of the

non-gravitational accelerations P. These are treated sepa-

rately in Section IV-D-1 and IV-D-2.

1. Solar radiation pressure. The Mariner II spacecraft

was equipped with two fairly large solar panels to provide
power for the instruments on board, and because the

spacecraft was attitude controlled to keep these panels

directed at the Sun, a component of force arising from
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solar radiation pressure occurred in a direction radially

outward from the Sun. To understand the physical mech-

anism behind this force let T be the flux of radiation

from the Sun at the distance of the spacecraft, so that the

rate that momentum is transferred to the spacecraft with

an effective area Ae, is _Ae,/c where c is the velocity of

light. Also a fraction of the radiation is reflected from the

surface according to some reflection law and the resulting

momentum added by the reflection can be accounted for

by augmenting the radiation flux by a fraction v so that

the total radial force acting on the probe is

TAeff (1 +30 (0<3, <1) (129)f= c

Of course the flux of radiation obeys an inverse square

law with respect to the distance roy from the Sun and it

is convenient to express the flux as T = To/r_p (a.u.) so

that for ro_, (a.u.) equal to unity the flux is simply equal to

the solar constant To. According to Abbot (Ref. 82) the

value of To is 1.374 X 10_' erg/cm2/sec. Now by dividing

the force f by the mass m of the probe the perturbative

acceleration r)a,_ which results from the solar pressure is

given by

r_p (a.u.) (130)
_._d - ToA_,cm (1 + _) rop (a.u.)

For Mariner II the values of Aet_ and m are known to the

same order of accuracy as the solar constant To but _ can

lie anywhere in the interval from zero to one. We adopt

values of A,, = 3.83 X 10 *cm -_and m = 1.9822 × 10 _gm

and leave 7 as a free parameter to be determined from

the least squares solution of Section V. Then the numeri-

cal expression of Eq. (130) is

r_rad = (0.8856 X 10 -1°) (1 + ,/) top (a.u.)
r_p (a.u.) km/sec'-'

(181)

The magnitude of the acceleration from solar radiation

pressure is significant. For the approximately 100 days of

the Mariner II data, an assumed propagation of the effect

of the acceleration on position according to the square of

the time results in a 3500 km effect on the trajectory.

2. Low-thrust attitude-control forces. The attitude of

the Mariner II spacecraft was controlled so that the solar

panels were always facing the Sun and the high-gain

antenna could be directed at the Earth. This control was

produced by the release of cold nitrogen gas from a num-

ber of jets. In standard operation, the jets were supposed

sufficiently coupled so that there could be no significant

perturbation of the trajectory of the spacecraft. However,

existing least-squares fits to the Mariner H Doppler data

(Ref. 1, p. 141; Ref. 2, Section 3) indicate that low-thrust

forces were present because of a nonstandard operation

of the attitude control system. These forces are assumed

unknown here and a set of attitude-control parameters
is introduced for estimation. An iterative minimization

of the sum of squares of the residuals requires that the

attitude-control model be incorporated through P of

Eq. (118) into the equations of motion for the spacecraft.

The basic assumption for constructing the low-thrust

part of P is that the forces are represented by two physical

processes. The first is a slow gas leak from some unknown

point in the attitude-control system. The second is a

failure of the gas jets to act in couples. With a model of

this sort the number of attitude-control parameters can

be kept to a minimum. Also, an estimation of physically

meaningful parameters can aid in the postflight engineer-
ing evaluation of the attitude-control system, although

such an evaluation is not a part of this dissertation.

For an ideal slow leak, the perturbative acceleration

in the equations of motion acts in an unknown direction

with a magnitude proportional to the pressure in the gas

reservoir. If the leak is slow enough, the pressure can be

considered a constant. Because the spacecraft remains

attitude-stabilized over the entire Mariner II mission, the

leak must not be so fast as to deplete the supply of gas.

Rather than assuming a constant pressure, and conse-

quently a constant perturbative acceleration, the leak is

represented by a quadratic function in the time from the

epoch. The direction of the thrust is assumed fixed with

respect to the principal axes of the spacecraft. The refer-

ence plane for these axes is the plane containing the Sun,

the spacecraft, and the Earth. One of the axes in the

reference plane, the roll axis, lies along the Sun-spacecraft
line.

Let U®_, be the unit vector in the direction of the helio-

centric position of the spacecraft. Also let U_, be the unit

vector in the direction of the geocentric position of the

spacecraft. Both unit vectors are simply computed as a

function of time from geocentric ephemerides of the Sun

and spacecraft. The unit vector N, normal to the reference

plane, is given by a vector product of Uo, and U_j,

N- U®.XU_I,
IU_ X U._ I (132)
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where [ U®p × Uep [ is the magnitude of the vector
product. The third axis T, is computed by the following
formula:

T = N X Uoz, (188)

Thus (Uoz,, T, N) defines an orthonormal right-handed

coordinate system which is fixed with respect to a com-

pletely attitude-controlled spacecraft. The perturbative

acceleration for the leak is therefore given by (1 - al

X r- a,, r'-') (/1Uop + f., T + f3 N), where r is the time from

the epoch to. The parameters in the leak model are (_1, a._,),

the coefficients in the assumed quadratic decrease in the

thrust, and (fl, f._, f._), the magnitude of the thrust at the

epoch multiplied by the respective direction cosines of

the thrust vector in the spacecraft-fixed system of co-

ordinates.

The failure of the gas jets to act in couples introduces

a perturbative acceleration which depends on the degree

of unbalance between opposing jets, the limit-cycle char-

acteristics of the attitude-control system and the disturb-

ing torques acting on the spacecraft. In the normal

limit-cycle operation the net average thrust over the

duration of the mission is practically zero. However, if

there is a significant unbalance in the individual thrust

levels of the jets, then, on the average, a constant low

thrust is imparted to the spacecraft. This effect can be

absorbed in the model already introduced for the slow-

leak thrust. Again the direction of the net thrust is fixed

with respect to the principal axes of the spacecraft.

For the situation where the attitude-control system

senses the effects of disturbing torques and subsequently

opposes them, an unbalance in the jets imparts a thrust

which on the average is proportional to the disturbing

torque. If this torque is constant then the average thrust

produced by the unbalanced jets in opposing the torque

is also constant. Therefore, the previous model will suffice.

Notice that torques produced by the slow gas leaks can

also be represented by the previous model and thus the

thrust imparted by the unbalanced jets is absorbed in
the coefficients of the thrust from the leak itself.

The only other significant time-varying torque arises

from the solar-radiation pressure acting on a center of

pressure not coincident with the center of gravity. Then

the torque is proportional to the inverse square of the

distance r®_,of the spacecraft from the Sun. The pertur-
bative acceleration which results from the solar-radiation

pressure itself was treated in Section IV-D-1 as a radial
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perturbation along Uo,, with a magnitude proportional

to r_.

It is impossible to separate this radial acceleration

from that produced by the uncoupled jets which react to

radiation-pressure torques. However, it is necessary to

add a tangential and normal component to the equations

of motion in order to represent the general reaction to

these torques. Thus the additional term in the accelera-
tion to account for the unbalanced jets is simply

(K/r_)p)(GT T + G_- N). The constant K is introduced
arbitrarily to make Gr and G_, dimensionless parameters.

It is assigned a value equal to the constant of propor-

tionality for the acceleration which results from the inci-

dent radiation on the Mariner II spacecraft and is the

numerical coefficient in Eq. (131).

The total non-gravitational perturbative acceleration P

is now specified by combining the solar radiation per-

turbation (Eq. 131) with the attitude control model
described in this section. The result is

p z

Ilia(T) + K(1 + -/) 1r_)p(a.u.) U®I,

I KGT J+ /:2a(r) + r_p(a.u.) T

I KC" 1-4- f3 a(r) q- r_)p(a.u.) N
(ls4)

where ¢x(r) is the quadratic function

aft) = 1 - a,, - -° (lS5)

and K is the numerical coefficient of Eq. (181).

K = 0.8856 X 10-1° (km)(a.u.)_(see) -2

E. Differential Coefficients

In order to apply the differential correction formula of

the least-squares procedure, in particular Eq. (49) of

Section IV-A, the differential coefficients relating varia-

tions in the parameters x of the problem to the data z are

required. In the terminology of least squares, the lin-
earized observation equations, dz = A dx (Cf. Eq. 46), are

the equations of condition and the elements of the
matrix A are the differential coefficients which are derived

in this section. Again, as in Section IV-A, we rely on
matrix notation when discussing the general theoretical

aspects of the computation of the coefficients in the
matrix A, but the detailed formulation of the differential
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expressions carried out to obtain computational formulas

is accomplished without the complete generality of the
matrix notation.

The general situation is that the representation of the

Doppler data occurs in two stages. In the first stage

the Doppler observables are represented as a function

z = z (q, s, t), where q represents the six components of

the spacecraft's position and velocity, s is the set of con-

stants needed explicitly to represent the data, in particular
the station coordinates, and t is the set of observation

times indicating when values of the Doppler observable

are required. To make the function z (q, s, t) less mys-

terious it should be compared with Eq. (86) which gives

the actual functional form of the Doppler computation.

The second stage of the representation involves the ex-

pression of the position and velocity q of the spacecraft

as a function q = q (qo, p, t) of the initial position and

velocity qo of the spacecraft at the epoch, the astronom-

ical constants p required to compute the trajectory and

again the observation times t. Thus, the total variation of

z with respect to the parameter set x = (qoipis) can be
obtained by differentiating the two functions of z and q

and combining the result. If the differential coefficients

are collected in matrices, the resulting expressions can

be written in a compact matrix form useful for theoretical

considerations. The matrices containing the various dif-

ferential coefficients are defined through their location in

the following general relations.

dz --- Gdq ÷ Hds (186)

dq = Udqo ÷ Vdp (187)

A combination of Eq. (186) and (137) yields a partitioned

form of the matrix A introduced in Eq. (46).

dz = Adx = GUdqo + GVdp + Hds (138)

Thus, A can be expressed by

A = (GU GV H) (139)

Now the matrices G and H can be obtained in closed

form by simply differentiating the Doppler formula

(Eq. 46) with respect to the position and velocity q of the

spacecraft and the station locations s. The resulting dif-

ferential coefficients which make up G and H are derived

in Appendix C. When one considers the evaluation of the

other two matrices in Eq. (189), i.e., U and V, it is not so

easy to obtain closed form expressions for the differential

coefficients because the equations of motion themselves

(Eq. 119) cannot be integrated in closed form. Therefore,

it is expected that an accurate calculation of U and V

must involve numerical integration techniques, just as
does the numerical evaluation of the orbit in the form

q _ q (qo, p, t). Of course extreme precision in the coef-

ficients of U and V are not required because they are

only used to obtain the least squares solution to the

parameters qo and p and the calculation of residuals,

which must be precise, is always performed by an ac-

curate numerical solution to the equations of motion, not

by a linear correction to nominal or preliminary residuals.

Herrick (Ref. 33) has described four methods for obtain-

ing a numerical evaluation of the matrix U and has

derived in addition (Ref. 84) two-body expressions for
the differential coefficients in U in terms of his "universal

variables." However, analytic expressions of this sort are

applicable to situations of near two-body motion, and

because planetary probes of the Mariner type are dom-

inated by three bodies, first the Earth, then the Sun and

finally the target planet, their orbits are difficult to ap-

proximate by two-body motion; it is necessary to transfer
the origin of coordinates from one body to another de-

pending on which is exerting the greatest influence on

the spacecraft. Therefore, to avoid the problems asso-
ciated with this transformation of coordinates and to

obtain accurate coefficients even in a region where two

bodies exert an equal influence on the probe, both mat-

rices U and V are evaluated by a numerical integration

of expressions associated with what Herrick calls the

"linearized Encke" method (Ref. 88, pp. 15--18). It in-

volves the integrating of a set of variational equations.

This choice is somewhat arbitrary and has been made on

the basis of the method being perhaps the most straight-

forward and the easiest to implement in a computer

program. It may not be the most eflqcient method but a

comparison of the various alternatives for the computa-

tion of U and V is outside the scope of this work which

is oriented strictly toward a meaningful determination
of the constants. To this end we will show in Section V-B

that the "linearized Encke" method is sufficiently accu-
rate for the reduction of the Mariner II data.

A brief explanation of the method is in order, particu-

larly since the procedure for evaluating the matrix V is

not immediately obvious. This explanation is based on

arguments of variational calculus as applied to matrices.

The interested reader who wants to investigate the rela-

tionship of the method to a linearization of Encke's
method as used with variant calculations or who wants

to explore the alternative methods of computation is
referred to Ref. 88 and 84.
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It is convenient, at least formally, to express the equa-

tions of motion for the probe as six first-order differential

equations //= q (q, p, t) in the position and velocity

components q and the constants p. Clearly, analytical

formulas exist for these equations and if we partition q

into the three position components qpo._and three velocity

components q,-el the explicit form is _/pos = q,,el and

_]vel = q,-el (qpos, p, t) where the function qvel (qpos, p, t)

is given by the accelerations in Eq. (119). Now, the equa-

tions of motion can be differentiated with respect to q

and p to obtain a set of differential coefficients. Thus,
formulas can be obtained for the elements of differential

coefficient matrices defined by d_ = 4_ dq + O dp. On

the other hand the solution to the equations of motion is

of the form q = q (qo, p, t). It is not important that the

function q (qo, p, t) cannot be obtained in closed form,
the only consideration here is that the function exists

and that it is determined by the initial conditions qo, the

constants p, and the time t. Then the variation in q
which arises from differentiating the solution can be

written dq = Udqo + Vdp as in Eq. (187). Because of

the existence of the equations of motion the time deriva-

tive of dq. exists and a second expression for d_/is dq =
(Ydqo + Vdp which must be equal to the first expression

for d_. Therefore

(]dqo + _,'dp = e_ dq + 0 dp (140)

and by substituting dq = Udqo + Vdp on the right-hand

side of Eq. (140) and equating coefficients the following

differential equations are obtained

(] = _ U (141)

_) = • v + o (142)

A numerical integration of Eq. (141) and (142) will yield

the required matrices U and V subject to the initial con-

ditions U (to) = 1 and V (to) = 0 However we can obtain

an integral of the system of equations for U and V. From

Eq. (140) the matrix 4 is equal to D U -1 and if this is

substituted in Eq. (142) there results

f =/7 u-1 v + o (14s)

or by premultiplying by U -1, a new expression is obtained.

U-I ¢V" - U -1 (]U-iV = U-l O (144)

The expression U -1 U U -1 is simply the negative of the

time derivative of U-L Therefore

U-_ V + (d_ U-_) V = U-_ O (145)

and

d
d'_ (U-1 V) ---- U -1 0 (146)

With the previously stated initial conditions the matrix V

is given by an integral of the form

fro t
V(t) = U (t) U -1 @ dt (147)

The actual procedure used to compute U and V is to

integrate Eq. (141) along with the equations of motion

by a step-by-step numerical integration procedure and

then to evaluate V by numerical quadrature according

to Eq. (147). All that is required besides the numerical

integration procedure is formulas for the elements of the

matrices 4 and 0 which are derived in Appendix D.

V. Numerical Results

In this section, numerical results are presented which
lead to a selection of values for the constants determined

from the Mariner II data. Only the data listed in Ap-

pendix E are used, but several solutions for the constants

are given in order to explore the effect on the solutions

of various assumptions about the nature of the Mariner II

orbit. Unfortunately, there are more unknowns in the

problem than the orbital parameters and the three con-

stants of interest, and it is necessary to consider in addi-

tion such matters as the precision of the numerical

methods, the behavior of the low-thrust forces, and also

uncertainties in the solar radiation force, the Venus

ephemeris, and the station locations.

First of all, the numerical accuracy of the numerical

integration of the equations of motion is investigated in

Section V-A, and then in Section V-B the accuracy of the

differential coefficients, as computed by the method de-

scribed in Section IV-E, is evaluated by comparing the

numerical results of that method with those obtained by

performing variant calculations with the Cowell form of
the equations of motion. The variant calculations also

permit the evaluation of the numerical accuracy of the

calculation of Doppler residuals. It is concluded, as a
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result of all this, that the Mariner II orbit can be com-

puted to better than seven significant figures, and prob-

ably closer to eight, and that the numerical error in the

orbit is caused by a rounding of numbers. There is no

noticeable error growth with time over the duration of

the Mariner II orbit. With respect to the differential coef-

ficients, the conclusion is that the method of Section IV-E

yields a satisfactory approximation to the coefficients as

computed by variant calculations. Further, the accuracy

for constants which affect the planetary encounter por-

tion of the Mariner orbit, the mass and position of Venus,

is maintained even when the epoch for the numerical

integration is taken at the beginning of the cruise data,

over three months before encounter. However, the agree-

ment for the mass of Venus is not as satisfactory as for

the position coordinates. An independence of epoch is

important in the solutions for the constants because both

epochs of Sept. 5 and Dec. 8, 1962 are used to define

Mariner II orbital elements in the form of cartesian coor-

dinates. The various solutions, which lead to the values

of the constants summarized in Section V-E, are given in
Section V-D.

A. Accuracy of Orbit Computation

In Section IV-D the equations of motion for the space-

craft were given and it was pointed out that their solution

could be obtained by numerical integration. The com-

puter program used for this integration is that developed

by JPL for their traiectory calculations (Ref. 24). It uses

an Adams-Moulton method which is applied directly to

the equations in the Cowell form. Both predictor and

corrector formulae are used with truncation occurring at

the 6th difference. The predictor and corrector formulae

are given, respectively, as Eq. (20.3) and Eq. (20.5) in
Ref. 35.

In order to investigate the accuracy of the numerical

integration, the two-body equations of motion are sub-

stituted for those of Section IV-D, where the two bodies

are the Sun and spacecraft. The numerical integration

should, for this situation, produce heliocentric cartesian

coordinates which agree with those predicted by the

literal solution to the two-body problem. To test whether
this is so, the cartesian coordinates from the numerical

integration, given to eight significant figures, are con-

verted to the classical Keplerian orbital elements by means

of the two-body formulae so that osculating orbital ele-
ments are produced as a function of the time from the

initial epoch. If the computed orbit is actually a two-

body one, then the osculating elements will be constant

over the interval of integration; and, more important,

any instability in the numerical integration procedure
will be evident in a greater and greater deviation of the

elements from constancy as the integration progresses

step-by-step.

The epoch for the integration is selected as 1962,

Sept. 7, 00h24m07_000 ET and all computations are car-
ried out in mean coordinates of 1950.0. The initial helio-

centric equatorial coordinates are

x = 1.4299640 X 108 km

y = -0.4064246 X 108 km

z = 0.16906182 X 10 s km

k = 6.0858449 km/sec

0 = 9_.8.748898 km/sec

= 11.284259 km/sec

Using a gravitational constant of 0.18271411X 1012 in the

conversion to orbital elements, we find the following set

of elements at the epoch:

a= 1.2694774× 108km

e= 0.19884007

Mo = 156758851

i = 178772489

= 888?03831

= 171771162

The orientation elements (i, fl, ,o) are referred to the

1950.0 mean ecliptic and equinox and the epoch for

the mean anomaly Mo is 1962, Sept. 5, 00h24m7:000 ET

The orbit corresponding to the elements is a close ap-

proximation to the actual Mariner II trajectory during

the time interval from 1962, Sept. 5 to early December

when the Sun dominates the motion of the spacecraft.

The computed elements are given at five-day intervals
in Table 2. The time of tabulation is 00h24m07:000 ET

Only the last three digits of each element are tabulated

because the first five digits are always the same and are

equal to those in the initial values of the elements.

The important observation with respect to the values

in the table is that there is no noticeable instability in

the integration procedure, and it appears that errors in

the Mariner II trajectory are predominantly caused by
rounding. The cartesian coordinates are accurate to better

then seven significant figures.
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Table2. Lastthreedigitsin two-bodyorbitalelements
ascomputedbynumerical integration

Date

a • M 0 i(1 962)

Sept. 7 774 007 351 439 331 162

Sept. 12 774 007 351 439 331 163

Sept. 17 774 013 351 437 331 162

Sept. 22 774 009 351 440 331 163

Sept. 27 774 009 351 434 330 163

Oct. 2 774 005 351 440 331 162

Oct. 7 775 013 350 437 330 163

Oct. 12 774 009 351 434 330 163

Oct. 17 774 007 351 440 330 163

Oct. 22 775 015 351 432 331 163

Oct. 27 774 007 351 438 331 162

Nov. 1 775 011 351 436 331 163

Nov. 6 775 013 350 437 331 163

Nov. 11 774 007 352 437 331 163

Nov. 16 774 001 352 439 331 163

Nov. 21 774 005 353 439 331 163

Nov. 26 775 009 351 435 331 162

Dec. 1 774 013 352 437 331 163

Dec. 6 774 007 352 434 330 163

B. Accuracy of Differential Coefficients

Because the calculation of differential coefficients,

which relate variations in the constants and orbital ele-

ments to variations in the data, is not particularly straight-

forward (Cf. Section IV-E), it is advisable to investigate
the accuracy of the calculation by comparing the results
of the linearized Encke method used in the solutions for

the constants, with that of the more straightforward

variant calculations. We will perform this comparison

for the constants only, but it is clear from Eq. (147) that

the method will not produce a favorable comparison
if the so-called state transition matrix U for the cartesian

coordinates is not reasonably accurate. Thus, a verifica-

tion of the accuracy of the matrix V, as computed by

numerical quadrature according to Eq. (147), will also

verify the accuracy of the matrix U, which is obtained

by an application of the Adams-Moulton numerical inte-

gration procedure to the differential equations in

Eq. (141).

First of all, consider the accuracy of the coefficients

for the three constants of particular interest, the masses
of Venus and the Moon and the astronomical unit. The

variations used for the variant calculations method are

aA = + 1000km (0.0007%)

ak_,, = + 1.0km3/sec 2 (0.02%)

aM_ = + 1.0 × 10 -9 (0.04%)

The resulting variations in the Doppler data are reflected

in columns (2), (4) and (6) of Table 3. The first column

gives the time at which the variation is evaluated. The

epoch for the calculations is 1962, Sept. 5, 00h24m07_.000

ET. A non-entry for the coefficients obtained from
variant calculations indicates that the variation in the

Doppler observation at that time is not numerically sig-

nificant. Columns (3), (5) and (7) of Table 3 give the

partial derivatives of the Doppler data with respect to

the three constants by the linearized Encke method

(Eq. 147).

The relatively poor agreement for the mass of Venus

suggests that perhaps the coefficients would be more

accurate if computed with an epoch near planetary en-
counter. That this is so is demonstrated in Table 4 where

the epoch for the comparison of the methods is 1962

Dec. 7, 00_0 E.T. The interval right around the time of

closest approach to Venus, about 20_!0 on Dec. 14, is

tabulated separately at the bottom of the table. The

agreement between the two columns is excellent.

Table 5 gives the variant calculation coefficients in

columns (2), (4) and (6) and the linearized Encke coef-
ficients in columns (3), (5) and (7) for the position of

Venus on 1962 Dec. 14, 20t!0 E.T. The variation in each

position component is + 1000 km for the variant calcula-

tions method. The epoch for the calculations is Sept. 5.

The same calculations with an epoch on Dec. 7 are shown
in Table 6. Notice that the two tables are quite similar

in the size and comparison of the coefficients; and, hence,

any difference in the two methods of computing the
coefficients, with regard to non-linearities, seem inde-

pendent of whether the epoch is Sept. 5 or Dec. 7. This

was not the case for the mass M_,, but the agreement for

the earlier epoch is still acceptable.

C. A-priori Information

The least-squares estimation formula (Eq. 49) used in

obtaining the constants from the Mariner 11 data has a

provision for adding a-priori information on the param-
eters x in the form of values _ and an associated covari-

ance matrix 1-'_.By a-priori information is meant assumed

knowledge, completely independent of the Mariner 1I

data, which bears on the parameters necessary to repre-

sent the Doppler observations. Indeed, even ff we used
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Table 3. Accuracy of differential coefficients in A, k 2 and M _ (Sept. 5 epoch)gm

Date

121 h UT)

9/io

9/15

9/20

9/25
9130

lO15
10110
10115
10120
10125
10130
11/04

11/08

11113
11118
11123
11128

1213
1218
12113
12/18

12/23

12/28

ACC3
_X 104

AA

(sec-lkm-1)

--0.156

--0.234

--0.371

--0.508

--0.664

--0.859

--1.016

--1.191

--1.367

--4.746

--135.0

--13.09

142.5

(_CC3
--X 10-4

_A

(sec-lkm-1)

ACC3

Lxk_

(sec km-s)

0.000

0.002

0.004

0.007

0.010

0.011

0.006

--0.007

--O.O34

--0.079

--0.147

--0.240

--0.333

--0.471

--0.630

--0.804

--0.982

--1.150

--1.315

--4.675

--132.8

--11.52

142.6

--0.020

--0.011

0.010

0.020

0.009

-- 0.007

-- 0.006

0.017

0.032

0.029

0.012

0.002

0.010

0.029

0.027

0.014

--0.008

--0.014

--0.002

0.000

1.379

1.137

0.813

_CC3

(sec km -3)

--0.018

--0.011

0.011

0.020

0.010

--0.005

--0.007

0.016

0.032

0.027

0.011

0.001

0.009

0.028

0.030

0.014

--0.006

--0.014

--0.003

0.003

1.433

1.178

0.837

ACC3
--" X 10 7

(see-l)

0.20

0.59

0.39

0.39

0.39

0.78

1.17

2.15

4.30

28.71

147.3

59.18

--49.41

aCC3

_"_v X 107

(see-l)

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.02

0.02

0.03

0.05

0.08

0.11

0.18

0.29

0.50

0.88

1.67

3.79

28.03

140.7

58.71

--41.30

Table 4. Accuracy of differential coefficients in M_ (Dec. 7 epoch)

Date

(21 h UT)

12/9

12/i I
12/13
12/14
12115
12/17

12/19

12/21

12/23

12/25

ACC3
_'X 107

(,ec-l)

1.8

5.3

24.0

545

196.1

156.6

127.7

96.5

61.9

25.2

_CC3
_× 107

(see-Z)

1.8

5.4

24.0

545

196.1

156.5

127.3

96.4

62.3

25.1

Date

(21 b UT)

12/27

12/29

12/14
16_0

17_0

18_o
19_o
20_0

21_0

22_0

_CC3

"_'_v N 107

(,ec-Z)

--15.2

--57.8

185.9

259.4

393.8

620.3

753.1

545.3

393.0

0CC3

--_-v M lO 7

(sec-])

--15.0

--57.7

185.8

259.2

393.1

620.3

751.2

545.2

392.7

the classical least-squares procedure, rather than that in-
dicated by Eq. (54), the initial values of the constants

and conclusions about their accuracy before and after
the introduction of the Mariner II data would depend on
such a-priori information. In fact the additional term in

Eq. (49) is used simply as a device to reduce to a sys-

tematic procedure the consideration of such a-priori in-

formation.

Most of the information is contained in the IAU report
on constants (Ref. 8) which gives limits on the values
of the constants as of 1964. More recent work on the
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Table5. Accuracyofdifferentialcoefficientsin thepositionof Venus(Sept.5 epoch)

Date
121hUT)

12/9
12/II
12/13
12/14
12/15
12/17

12/19
12/21
12/23

12/25
12/27

12/29

12/14

16h.o

17h.o

185.0

195.0

20b.O

21b.0

225.0

ACC3
X 10-s

AX,

(sec-lkm-1)

0.029

--0.010

0.043

262

98.8

92.5

85.8

77.8

68.5

58.1

46.8

34.4

17.0

34.5

79.0

193

332

262

168

aCC3
X 10-s

ax,

(sec-ikm-1)

-- 0.004

--0.008

0.043

261

ACC3
--X lO -s
Ay,

(sec-lkm-1)

0.057

0.065

0.611

13.3

0CC3
-- X 10-3
aY,

(sec-lkm-1)

0.027

0.067

0.614

19.3

_CC3
--X 10-s

(sec-lkm -1)

0.065

0.147

1.38

--116

98.4

92.1

85.2

77.3

68.2

58.1

47.1

35.3

16.9

34.2

78.1

188

326

261

169

--27.4

--35.9

--47.0

--59.8

-- 74.0

--89.5

--106

--123

22.3

37.3

67.8

120

118

--24.5

--33.1

--44.3

--57.3

--71.7

-- 87.4

--104

--122

22.3

37.3

67.9

121

123

13.3

--32.5

19.3

--28.3

--19.1

--9.50

0.629

12.2

25.3

39.4

54.6

70.8

32.6

48.1

71.0

79.8

--17.5

--116

--103

Table 6. Accuracy of differential coefficients in the position of Venus (Dec. 7 epoch)

_cc3
_X to-s

(sec-lkm-l)

0.053

0.150

1.38

--116

--18.1

--8.43

1.73

13.3

26.3

40.4

55.4

71 .I

32.5

48.1

71.4

81.8

--13.7

--116

--103

Date

(21 h UT)

12/9

12/I 1

12/13

12/1 4

12/15

12/17

12/I 9

12/21

12/23
12/25

12/27
12/29
1:V14
16h.O

17h.O

18h.0

19h.O

20.})0

21b.0

22ho

Z_CC3
-- X 10-s

--0.006

--0.010

0.039

262

99.0

92.8

85.8

77.8

68.5

58.3

46.8

34.4

17.0

34.4

79.0

193

333

262

168

aCC3
-- X 10 -s

($ec-lkm -1)

-- 0.003

--0.008

0.040

262

98.8

92.4

85.6

77.5

68.3

57.9

46.5

34.1

16.9

34.2

78.0

189

326

262

169

ACC3
-- X 10 -s

aYe

(sec-lkm-])

c_CC3
--X 10-3

(sec-] kin-l)

ACC3
X lO -s

_Z_

(sec-lkm-1)

_;K 10 -s
aZr

(sec-lkm-l)

0CC3

0.032

0.129

1.36

--116

--18.1

--8.48

1.72

13.4

26.5

40.8

56.2

72.4

0.01.0

0.055

0.596

13.2

--27.5

--36.0

--47.1

-- 59.9

--74.3

--89.8

--106

--123

22.1

37.0

67.3

119

117

13.2

--32.5

0.014

0.054

0.597

19.2

-- 24.7

--33.4

--44.6

--57.6

--72.0

-- 87.7

--104

--122

22.1

37.1

67.5

120

122

19.2

--28.3

0.029

0.127

1.36

--117

--19.2

--9.53

0.602

12.2

25.3

39.5

54.8

70.8

32.5

47.9

70.8

79.0

--18.1

--117

--103

32.4

47.9

70.9

81.0

--14.4

--116

--103
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determination of A from planetary radar bounce data*

would indicate a value of 149597890 km as more appro-

priate than the value of 149600000 km in the IAU report.

There seems to be good justification for assigning A an
a-priori standard deviation of -+-100 km. In the solutions

for the constants, we sometimes use this value when we

wish to introduce the planetary bounce data into the

Mariner II results, but solutions are also given that assume

a much larger a-priori uncertainty in order to obtain an

independent determination of A from Mariner II. For

the new value of A, it is necessary to compute a new
correction _' by Eq. (20), which is

_" = (--14.10 ±0.67) x 10 -G

A-priori numerical values and uncertainties for other

constants are given in Section III-E. Therefore, the re-

mainder of this section is devoted to exploring the a-priori
information about constants peculiar to the Mariner II

data, in particular constants for the low-thrust forces,
solar radiation pressure, and the station locations.

The low-thrust and solar radiation forces are given by
Eq. (134) and the constants which are treated as un-

knowns are fl, f.2, f._, al, a2, y, G_, and G_- The uncertainty

in the solar radiation proportionality constant K is ab-
sorbed in _, Gr, and G_-. The most obvious information

about this set of constants is that by definition 0 _ _, _ 1

and so we set the a-priori value of -/equal to _" = 0.0 ± 1.0.

With respect to the low-thrust constants we will set

them all equal to zero initially and assign uncertainties

on fl, f2, f3, Gr and G.v equal to 100% of the solar radia-

tion force. A force of this magnitude would be unreason-

ably large for the Mariner II spacecraft. A 100% force

yields uncertainties of ±1.0 for Gr and G.v. The maxi-

mum acceleration imparted to the spacecraft from solar

radiation pressure is 1.66x 10 -1° km/sec'-' (Cf. Eq. 181)

and thus this same value is used for the a-priori uncer-
tainties on fl, f2, and f3-

A piece of information about the magnitude of al and

a2 in Eq. (135) is that the spacecraft remained attitude

stabilized until at least Dec. 30 and thus did not deplete
its supply of cold nitrogen gas. If we assume that a leak

occurred through a permanent hole in the system and
was present throughout the whole duration of accurate

tracking data, then al, and as must be bounded so that

a(r) does not go to zero in the ll7-day interval. This is
assured if el is less than 1/r and az less than 1/r 2 where

*Private communication with experimenters at JPL (Melbourne,
Muhleman, Holdridge ) and Lincoln Laboratories (Ash, Shapiro).

r = 117 days. Thus ai and as are initially set equal to

zero with uncertainties of ±10 -T sec -1 and ±10 -14 see -z,

respectively.

The situation with respect to the station locations of

the transmitting and receiving antennas is that their rela-

tive positions can be determined quite accurately since
they are only a few kilometers apart. However, we want

to assume a large uncertainty in their absolute locations
because the Mariner II data can determine the absolute

positions better than the a-priori survey data. Therefore,
we will assume a ±1 km absolute error in station loca-

tion and ±10 m relative error. To define the relative

positions of the stations, define two parameters ±R and
AA by

AR = R1, - R,., (148)

a,t = ,_1i - ;t 1_ (149)

The latitude is not considered because only two com-
ponents of the station location can be determined with

the Mariner II data and the least-squares solutions cor-

rect only radius R and longitude ,_, not latitude q_. Now

in the solutions the station location parameters for both

stations are R,,, ;tl_, R,_ and M_o and a-priori values for

these coordinates are available from survey data. How-

ever, because of the assumed high accuracy of the dif-

ferences AR and A;t, when an a-priori covariance matrix

is used in the solutions, it must reflect this high accuracy
through correlations between the four station coordinates

which are obtained by the least-squares solution. A more

direct approach would be to solve for Rll, All, say, and

the differences AR and a;t. Then the correlations between

the four parameters could be assumed zero and the

covariance matrix would have a simple diagonal form.

However, the computer program is not set up this way, so

the simple diagonal matrix on the set (Rll, X11, AR, A,t)

must be transformed to the covariance matrix on (Rll,
;t11, RI_, Alo). To do this, write

812 : Rll -- An (150)

x_._= xl, - ax (151)

Then the first-order variations in R_ and ;t12 are

815 = _ Rll -- 8 AR (152)

8 x_z = _ Xn -- AX (158)
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Remembering that the covarianees between Ru, h,1, AR

and ±x are all zero, the covariances between R_I, AI_,

R,_ and x,., can be computed by forming the expected

value of various products of _Ru, _Xn and the 8R1_ and

8x,_ defined by Eq. (152) and (153). For example, the

covariance between Rn and Rr., is

C( R11aR 2}= C(( all)q - e(( an)

(154)

But the second expectation is zero, and Eq. (154) yields

the result that

2

JORll, R12 O'Rll O'R12 _--- {3rR11
(155)

where plq, RI,_ is the correlation coefficient which can be
written

p,q. lq._, - aRn (156)
o'/_ 12

The variance on R12 is obtained by squaring Eq. (152)

and again taking the expected value

2 (157)ErR12 _ O'R11

The other variances and eovarianees can be evaluated

in a similar fashion to obtain the complete 4 X 4 covari-

ance matrix on station coordinates

aR0 0 2 0 /

11 ORll

F = %_ _ (158)
o

11 O'R :t 1 O'AR

lYykl 1 0 O'_kll -_ ff_./

The uncertainties of 10 m and 1 km in (aR, ah) and

(R_,, an), respectively, yield

O'R11 = a COS _ O'2_11

%n = R cos _ba_x

= 1.0 km (159)

= 0.01 km (160)

and with R cos ¢ = 5212 km, the a-priori covariance ma-

trix, or actually the more useful inverse covariance matrix,

which can be made a part of the whole inverse matrix

Px < for Eq. (49), is

R= Xn

10,001 0

F -_ = 0 82,808,280

-10,000 0

0 -82,800,000

R12 h12

-- 10,000 0 X

0 - 82,800,000 1

10,000 0 /
0 82,800,000/

D. Numerical Solutions

The methods of Section IV are applied in this section

to obtain values for the three constants (e, M:,, A) as well

as the coordinates of the transmitting and receiving sta-

tions and the position of Venus during the encounter

period. Previous solutions (Ref. 1 and 2) have also ob-
tained values for the constants but both suffer from serious

defects. The first solution of Ref. 1 does not include the

effects of the low-thrust forces or ephemeris errors. The
second solution of Ref. 2 includes these effects in the dif-

ferential correction but does not apply the corrected

parameters for a recomputation of residuals. Also, the

corrections to the position of Venus are erroneous in Ref. 2

because of an error in the computer program used to

compute the differential coefficients. Until the corrections

to the Venus position could be applied to the ephemeris

for a recomputation of the Mariner II orbit, it was not

possible to check the computation of the coefficients as
done in Section V-B.

The limitations of the previous solutions do not allow

the determination of definitive values for the constants,

but the solutions are useful in establishing that the

Mariner II determinations are not sensitive to reasonable

errors in the Earth's ephemeris or in the velocity co-
ordinates of Venus. The demonstration of this fact through

solutions for the Earth's elements and velocity coordinates

of Venus is not duplicated here, but can be found in Ref. 2.

Instead, the emphasis of this section is on the selection of

a proper model for the spacecraft's low-thrust forces and

on displaying a number of solutions for the constants

under varying assumptions. As a result, the values of

the constants given in Section V-E can be accepted with

a fairly high degree of confidence as reflected in the as-

signed standard deviations for the determined parameters.

For comparison purposes, the value of _-_ obtained from

the previous solutions of Ref. 1 and 2 is 81.3012 -+-0.0034.

The mass ratio (M_) -1 from Ref. 1 is 408526 ±30 and
from Ref. 2 it is 408587 ±25 where in both cases the

values are adjusted for an assumed astronomical unit of
149597900 kin. A definitive value of A was not claimed in
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either of the previous solutions. Again, it is emphasized

that these values are subject to systematic errors which
are now known and which have been practically elimi-

nated in the current solutions. This improved determina-

tion of the constants gives

_-1 = 81.3001 ±0.0018

(M:,) -1 = 408504.8 ±5.5

A : (149597546 ±500)kin

1. Determination of low-thrust model. In Section IV-D-2
a model for low-thrust forces is described based on physi-

cal processes occurring in the attitude-control system.

Consequently besides the solar radiation constant _, the

situation of significant forces because of an unbalance in

the firing of attitude control jets is handled by the param-
eters Gr and Gx. On the other hand, a slow leak from a

small hole in the system is handled by the parameters

fl, f.,, f3, al and a_ which also take care of the case of

unbalanced jets when the dominant torque on the space-

craft is not solar radiation pressure. Thus the parameters

GT and G_- are intended for a very special situation where

the jets are unbalanced and the dominant torque is

proportional to the inverse square of the spacecraft's dis-
tance from the Sun, as for radiation pressure torques.

It is not possible to estimate all of these parameters

simultaneously because of the relatively short time inter-

val over which data are available. Therefore the approach

of this section is to display two least-squares solutions to

the cruise data, defined by data in the time interval from

Sept. 5 to Dec. 7, 1962 before Venus dominates the space-

craft's motion, such that the first solution (Solution I)

assumes that the forces obey the model described by the

parameter set (fl, f._,,f:_, ctl, ct..,)and the second (Solution II)

assumes a model described by the set (7, Gr, Gx). Of

course, even in the first solution it is necessary to include

the parameter 7 because, whether or not there are low-

thrust forces present, there is always a direct force com-

ponent from the solar radiation. In the second solution,

the parameter e is varied to allow both for the direct

radiation perturbation on the trajectory and for an indirect

perturbation from uncoupled jets which fire because of

the solar radiation torque on the spacecraft.

The results of the two solutions are given in Table 7.

Parameters in the solutions are given in the first column,

the second column gives the assumed initial values of the

parameters with their a-priori errors as discussed in

Section V-C, and the third and fourth columns give,

respectively for Solutions I and II, the corrections to the

initial values that best fit the data in the least-squares

sense. The position and velocity coordinates of the space-

craft represent as initial conditions, the orbital elements

referred to the true equator and equinox at the initial

epoch (1962, Sept. 5, 00h24'n07s.000 E.T.). If a parameter

is not included in the solution, then its a-priori error is zero

by definition. Thus, for example, kg_ is assumed perfectly

known in both solutions, while G_, and G_. are known per-

fectly in Solution I but known a-priori to ±1.0 in Solu-
tion II.

The most obvious method of discovering which param-

eter set best represents the actual low-thrust forces on

the spacecraft is to compare the two solutions with respect

to their ability to fit the data. One measure of the degree

of approximation to the real data is the weighted sum of

squares of the residuals, the function S(x) in Eq. (43).

Another measure is the function Q(x) defined by Eq. (44)

which is minimized by the indicated corrections in the

solutions. The residuals for the two solutions yield the

following values for the functions.

Solution I Solution II

S(x) 595.70 515.64

Q(x) 596.18 524.76

It is highly doubtful that the difference in S(x) and Q(x)
between the two solutions can be considered significant.

Note, because of the weighting of the data in the two

functions, that they are dimensionless, and their magni-

tudes depend on the values of the weights. For all solu-

tions in this section the nominal weight assigned to the

Doppler data is 3500(Hz-"), but we will return to a more
detailed discussion of weighting later. For the moment

the chief concern is the selection of the proper low-thrust

model for use in subsequent solutions.

Because S(x) and Q(x) reveal very little about the

comparative aspects of the two fits to the data, the

residuals themselves are next investigated, However,

rather than list the complete set of 1006 residuals, the

residuals for each horizon-to-horizon pass of data are

compressed into two numbers. The first of these is the

mean residual which is obtained by adding together all

the residuals of a particular pass and then by dividing

by the number of residuals in that pass. The difficulty

with this sort of number is that large systematic effects

in a single pass of residuals can go undetected if they

average to zero over the pass. To avoid missing such

systematic effects, the RMS residual is also computed by

summing the squares of all the residuals and again divid-

ing by the number in the pass. Admittedly, these two
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Table7. Comparisonof low-thrustmodels

A-priori Solution I Solution II

value correction correction
Parameter

x(km)

y(km)

z(km)

x(km/sec)

y(km/sec)

z(km/sec)

k 2gm(km3/sec 2)

k2ge(km3/sec 2)

A(km)

fl(km/sec 2)

f2(km/sec 2)

f3(km/sec 2)

_t(sec -1)

_2(sec -2)

GT

GN

Rll(km)

R12(km)

k]2

--1424206.8 ± 106

--1939477.0 -t- 106

-- 100648.79 ± 106

--1.7444904 ± 1.0

22.6 ± 49.6

34.1 ---t-67.7

10.6 ± 77.9

(--0.28 + 1.57) X 10 -5

--120.8 ± 42.1

-- 142.4 __. 58.3

99.9 _ 71.8

(--1.33 ± 1.26) X 10 -5

--2.4234005 ± 1.0 (0.31 ± 1.30) X 10 -5

--0.11009572 ± 1.0 (--1.90 ± 6.15) X 10 -5

4902.8365 -I- 10.0 --0.052 -I-_ 0.069

398601.27 _ 0.0

149597890* --202 -I- 970

0.0 ± 10 -1° (--0.03 ± 0.35) X 10 -1°

(0.22 -I- 1.09) X 10 -5

(18.66 ± 5.36) ;K 10 -5

0.114 -t- 0.068

--6670 ___ 1250

0.0 ± 10 -1o

0.0 -t- 10 -1o

0.0 -f- 10 -7

0.0 ± 10 -14

0.0 __. 1.0

0.0 ± 1.0

0.0 ± 1.0

6372.0149 _ 1.0

243.°15067 ± 0.°01

6371.8805 + 1.0

243.°19454 ± 0.°01

(--0.36 _ 0.02) X 10 -l°

(--0.15 -t- 0.15) X 10 -l°

(0.07 -t- 0.29) X 10 -7

(0.81 -t- 0.73) X 10 -14

0.00 ± 0.34

--0.003 -f- 0.008

(--0.06 ± 0.15) X 10 -3

0.002 ± 0.007

(--0.05 ± 0.15) X 10 -3

D

B

--0.381 ± 0.019

0.109 ± 0.027

0.047 ± 0.057

-0.014 ± 0.007

(--0.28 ± 0.13) X 10 -3

--0.008 ± 0.007

(--0.24 ± 0.13) X 10 -3

*A.priori uncertainty in A is 4"1000 km for Solution I, 4"2000 km for Solution II.

derived or compressed residuals are less informative than

the original set of residuals, but the listing of residuals

for all the solutions is not reasonable, although all

residuals for Solutions III and VII, which represent the

best fits to the data, are given in Appendix E along with

the data themselves.

The compressed residuals for Solutions I and II are

given in Table 8. Note that the first entry for pass 9/5--9/6

is actually a combination of two passes of data over the

last 4½ hr as the spacecraft was setting at the station.

It appears as though Solution II provides a slightly
better fit to the data than Solution I whose residuals

near the end of the cruise data seem biased toward

positive values. The negative bias of the residuals in

Solution II is less pronounced and the RMS residuals

are generally smaller in this period. However, before

Gr and Gr are accepted as the parameters to represent

48

the low-thrust forces, it is advisable to look at the cor-

rections to the initial values of the parameters. This

shows that there is nothing which conflicts with the

a-priori uncertainties on the parameters with the excep-

tion of the astronomical unit (a.u.) A. A correction of
-6670 km would result in a value of 149591220 km for A

which seems highly unlikely in view of the results ob-

tained from the bounce experiments.

The conclusion from the comparison of the two low-

thrust models is that either will produce a satisfactory

fit to the data, but that in order for the parameters Gr

and GN to do so, the value of A must be given an un-

reasonably low value, a constraint not imposed by the

parameters of Solution I. Therefore, the model of Solu-

tion I is chosen to represent the Mariner II low-thrust

forces. At this point it appears that it might be impossible
to determine a value of A from the Mariner II data with-

out engaging in circular reasoning; for, after all, does not

JPL TECHNICAL REPORT 32-816



Table 8. Comparison of compressed residuals
for solutions I and II

Solution I Solution II
Number

Pass
of

Mean Rms Mean Rms
obser-

residual residual residual residual
vations

Receiver (11 ) (Hz) (Hz) (Hz) (Hz)

9/5-9/6 90 0.0006 0.0114 0.0045 0.0124

9/6-9/7 61 --0.0005 0.0146 0.0003 0.0146

9/7-9/8 64 0.0001 0.0142 --0.0009 0.0144

9/8-9/9 65 --0.0013 0.0141 --0.001 6 0.0142

9/14-9/15 64 --0.0000 0.0149 --0.0004 0.0151

9/22-9/23 27 0.0041 0.0072 0.0020 0.0064

9/23-9/24 63 --0.0001 0.0148 --0.0025 0.0151

9/29-9/30 43 --0.0025 0.0048 --0.0028 0.0049

10/6-10/7 31 0.0019 0.0066 0.0005 0.0066

10/14-10/15 60 0.0031 0.0169 --0.0019 0.0167

10/24-10/25 44 0.0062 0.0105 0.001 8 0.0088

10/27-10/28 45 0.0024 0.0056 --0.0016 0.0051

11/5-1 I/6 52 0.0032 0.0050 --0.0046 0.0061

11/10-11/11 46 0.0100 0.01 12 --0.0059 0.0079

11/17 54 0.0087 0.0103 --0.0081 0.0098

11/26 50 0.0140 0.0148 --0.0003 0.0058

12/1 48 0.0123 0.0190 --0.0013 0.0144

12/7 38 0.0126 0.0140 --0.0111 0.0128

Receiver (12)

10/14-10/15 53 0.0026 0.0113 --0.0030 0.0112

10/24 8 0.0092 0.0110 0.0049 0.0075

the selection of a low-thrust model based on the radar

bounce value of A assure that any subsequent solution

will simply result in the same radar bounce value?

Fortunately, it does not, but only because of the general-

ity of the model characterized by the f and a parameter

set (fl, f.,_, f:, ax, a.,). In particular, Eq. (184) and (185)

show that the f and a set can produce a perturbative
acceleration that either increases or decreases as a func-

tion of time, while Gr and GN can produce only an
increasing acceleration for Mariner II because the helio-

centric distance is always decreasing during the duration

of the data. Therefore, the parameters GT and GN would
only be selected if it were clear that the low-thrust forces

obey that sort of model. Then the use of only two param-

eters to describe the forces would be far superior to using

the five parameters of the f and a set to approximate the
curve generated by Gr and G.v. However, since there is

no clear choice between the two parameter sets, it is rea-

sonable to choose the more general f and a set which can

also represent the Gr and GN curve if required to do so.

The two solutions of this section indicate that if one

insists on an increasing model for the level of the low-

thrust force, then it is necessary to choose a very low
value of A in order to fit the data. However, if the choice

of whether the curve should increase or decrease is left

free, then a solution for the constants such as Solution I

tends toward a decreasing force with a small correction

to A. Again, if later solutions with both the cruise and

encounter data, which are required for the actual deter-

mination of A, indicate that a low value of A and an

increasing force provides a better fit to all the data, we

have not excluded this possibility by selecting the [ and a

set or parameters.

In order to see that Solution I really indicates a

decreasing force, the magnitude of the low-thrust force

as computed by the values of f and a parameters from

Solution I is plotted in Fig. 1 along with its one-sigma

upper and lower error bounds. The magnitude of the

force is defined by (f_ + f_ + f_),/2 a(r). Notice that even
the upper error bound decreases, and hence it is very

unlikely that the actual force could not be decreasing
also unless the a-priori value of A is in serious error.

Another interesting result of Solutions I and II is that

in both cases the primary contribution of the low-thrust

force is along the negative tangential T axis of the space-

craft (Cf. Section IV-D-2) and is of about the same mag-

nitude in both. The tangential force is plotted for both

solutions in Fig. 8 with their respective one-sigma error

bounds as derived from the uncertainties given in the

solutions. Note that the two curves are significantly

different after about 50 days from the epoch. Before this
time, the errors on the two curves make them almost

indistinguishable.

The a-posteriori uncertainties associated with the solu-

tions Of this section and those to follow are computed

by simply taking the square roots of the diagonal ele-

ments in the matrix (AT"WA +_1)-1 as described in

Section IV-A. Of course the matrix P_ is made up of the
a-priori uncertainties as discussed in Section V-C and

listed, for example, in column 2 of Table 7. The most

important factor in the size of the a-posteriori uncertain-

ties is the size of the weights in the matrix W which is

constrained as a diagonal matrix by the computer pro-
gram. The weight for an individual doppler observation

is taken as the inverse of its variance or the inverse

square of its standard deviation. From Table 8 this mean

error would seem to lie in the region of 0.015 Hz which

is compatible with the expected performance of the

Goldstone station during the Mariner H period.
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However, in all the solutions of this and the following

sections, the basic weight for the data is based on a mean

error of 0.05 Hz, slightly larger than a three-sigma value,

and in addition the data at lower elevation angles are

assigned a lower weight according to a formula of

D. L. Cain (JPL):

18 ] (161)a(y) = 1 + (1 +7) 2 ,7

where cr is the basic standard deviation and a(7 ) is the

standard deviation as a function of the elevation angle y

in degrees of arc. Thus, for _/= 0 deg, _(0) = 19a while

for ,/ = 90 deg, a(90) = 1.002a.

The basic standard deviation of 0.05 Hz is for data

sampled every minute. Now a look at Appendix E indi-
cates that the data used in these solutions have varying

sample and count times, although the cruise data is fairly

consistently sampled at 10-min intervals. In fact, the

only data sampled at l-rain intervals are those of en-
counter when the count time is 50 sec. Effectively, there

are 10 times as many observations of 50-sec count in the

encounter passes as in the cruise passes, and if the data

error is random, then a pass of this kind of cruise data

should be weighted 1A0 as heavily as a similar pass of
encounter data. However, we do not have enough con-

fidence in the randomness of data sampled every one

minute to allow this 1/V_ effect to operate in determin-

ing the solutions and their a-posteriori uncertainties.

Not only systematic errors in the data themselves, but

also systematic errors from the numerical representation

of the data make independence of the data and the cor-

responding validity of the 1/V_ effect a poor assumption.

Thus, a pass of data with a 50-sec count sampled every

10 min is weighted exactly the same as a pass of 50-sec

data sampled every 1 rain. To assure that this is so, the

standard deviation used to weight the data is constructed

as a function of the sample interval Lxt according to the

formula

a(At) = _ _ (162)

In practice Eq. (161) and (162) are combining into a single
formula which is used for all weighting in these sections

_(at, r) = 1+ (1 _-/)2 a (163)
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where

o- = 0.05 Hz

Thus, practically all the cruise data for moderate values

of _ are assigned standard deviations of 0.016 Hz. An

alternate way of viewing the weighting of the data is to

state that all data are nominally assigned a standard

deviation of 0.016, unless the sample interval is less than

10 min, in which case the standard deviation is increased

to defeat the 1/¥/N effect. Perhaps this is the simplest

statement of the implications of using Eq. (168) to weight
the data.

2. Error formulae. Following Herriek (Ref. 7), a cor-

rection to a reference value of a constant is split into the

correction itself, plus the statistical uncertainty. For
example, the correction A is written

= T+TaA eA (164)

where 3A/A is the correction to A" and eA is taken here as

the mean square error. From the Mariner II data, the

determinations of kAg,,, A and M _ yield in addition the

associated mean square errors 2 ekgm/kgm, EA/A and

eM_/M_. It is important also to include correlations given
by the covariance matrix associated with the determina-

tion (see Section IV-A) whenever the results are trans-

formed to other constants such as rA, /*, L, a, etc.

Designate the three correlations from the Mariner II

solution by the following:

pc'u, A -- correlation between k_m and A

pc, u, v -- correlation between k_,_ and M_

pA. V -- correlation between A and M_

All other correlations in constants not determined directly

by Mariner H are assumed zero. Eq. (27) to (33) yield

the necessary error expressions. Note that only p,M, a
appears in them and that the statistics of the constants

are quite simple for the Mariner II solution. Of course,

it is important to realize that constants left out of the

least-squares solution (e.g., 12, k_e, p, _, N) are assumed

known far better a-priori than if they were included, and

in fact it is also assumed that their a-priori uncertainty
has no effect on the statistics associated with the three

determinable constants. Thus, the direct contribution of

the uncertainty in k_e to that in /, is included in this

analysis, but its indirect contribution through the

Mariner II statistics is assumed negligible.

er___A_2 =(_)2 (165)ra 2'

kg_ ] =O -- (166)

(_)" = (-kT)2ekg"= +\{2ekg_'_'_kge} (167)

4( 1 )= {_kg.'_ 2 4 (en*'_= + (A) "_-_- -9 _ _ kge ] -}- '9 \ n_ ]

2 /3 + 1*\ 2_ku,_

= \1---=-7]

2 2,k.,

3. Determination of Earth-Moon mass ratio. In Sec-

tion III-F-1 it was pointed out that the mass of the Moon,

or actually the Earth-Moon mass ratio i, -_, could be de-

termined by the periodic component in the doppler data
resulting from the motion of the Earth about the Earth-

Moon barycenter. In this section the least-squares pro-

cedure is applied to the cruise data with the low-thrust

forces represented by the [ and a parameters as indicated

in the preceding section. Since the primary goal of these

solutions is the determination of /,, the encounter data
are excluded from them because uncertainties in the mass

and position of Venus and the astronomical unit intro-

duce systematic effects of their own which can be ignored

when only the cruise data are considered. Thus, the

purpose here is to isolate the effects of /, by choosing
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data taken before Dee. 8, 1962. The introduction of the

encounter data is expected to result in only a slight

improvement in _ over the solutions with cruise data only,

an expectation verified in the next section, because the

neglect of data from Dec. 8 to Dec. 20 represents less

than 1/, cycle in the periodic component which deter-

mines _. However, the cruise data includes about 31/._

cycles in the barycentric motion.

Actually, Solution I of the last section represents a

determination of _ under the assumption that the geo-

centric gravitational constant is perfectly known and that

the astronomical unit A is known a-priori to ±1000 kin.

The formula for t_-_ is

k_., GM (172)

and the variance on _-' is given in general by

= ¢c.e2 ¢.M (173)
where p¢;_:.(;M is the a-posteriori correlation between k 29e

and k_,,,. Of course for Solution I, both aGE and pGE, c.Jl

are assumed zero, and the percentage error in /_-1 is

simply equal to the percentage error in k 2grit"

A second solution (Solution III) for g is constructed by

using a more realistic value of the a-priori uncertainty

on A, specifically ±100 km, to see if constraining the
variation in A has any effect on _ and, more generally,

on the whole cruise solution. The results are given in the

second column of Table 9 and the mean and RMS re-

siduals are given in Table 10. There are no significant
differences between Solutions I and III, either in the

values of the parameters or in their a-posteriori uncer-

tainties. For example, k_,_ differs by about 0.060 km3/see 2,

but the uncertainty based on the previously mentioned

weighting of data is 0.069 km3/sec "-. Therefore the values

from the two solutions differ by less than one standard

deviation and the value of k_,_ is probably somewhere

in the region defined by the two solutions. However,

before deciding on a value for k_,_ it is well to remember
that the quantity actually determined from the Mariner

data is the mass ratio g as shown in Section III-F-1, and

hence a value for k_,_ as determined from Solutions I and

III depends on the assumed value of the geocentric con-

stant k_¢. In order to assure that no bias is present in /_
because of an erroneous value of k 2 two more solutions

ge _

Table 9. Comparison of solutions for the Earth-Moon mass ratio

Parameter

cA(km)

O'GE(km3/sec 2)

x(km)

y(km)

z(krn)

x(km/sec)

y(km/sec)

z(km/sec)

k_m(kmZ/sec 2)

/,_(kmV_e(2)
A(km)

fl(km/sec 2)

Solution III

correction

100

0.0

--30.2 -t- 49.6

--36.3 4- 67.5

41.8 _ 78.0

(--0.37 ___ 1.58) X 10 -s

(0.24 4- 1.30) X 10 -5

(2.04 ___ 5.88) >( 10 -5

0.0077 4- 0.067

0.0 4- 100

(0.02 + 0.381 X 10 -1°

Solution IV

correction

100

10.0

1.7 -f- 51.8

5.4 4- 70.7

--38.3 -t- 78.2

(--0.33 4- 1.58) X 10 -5

(0.35 4- 1.31) >( 10 -5

(--0.98 -f- 6.12) X 10 -5

--0.0541 _ 0.106

--2.76 4- 9.52

--42 -I- 100

(0.03 ___ 0.32) >( 10 -1°

f2(km/sec2)

f3(km/sec2)

al(sec-1)

(--0.34 q- 0.02) X 10 -10

(--0.12 _ 0.14) X 10 -1°

(0.03 4- 0.29) X 10 -7

(--0.35 4- 0.02) X 10 -1°

(--0.19 4- 0.17) X 10 -]°

(--0.01 4- 0.28) X 10 -7

a2(sec-2)

3'

Rll(km)

XH

R12(krn)

X12

(0.51 4- 0.73) X 10 -14

--0.03 4- 0.36

--0.007 4- 0.008

(--0.001 4- 0715) X 10 -3

--0.001 4- 0.007

(--0°.03 + 0715) X 10 -3

(0.92 4- 0.72) X 10 -14

--0.05 4- 0.30

--0.009 4- 0.008

(--0.°06 4- 0°.15) X 10 -3

0.003 4- 0.007

(--0.04 4- 0.015) X 10 -3

Solution V

correction

1000

10.0

5.5 4- 51.8

10.6 4- 70.7

15.5 4- 78.5

(0.00 4- 1.58) X 10 -5

(0.11 4- 1.31) X 10 -5

(--1.07 4- 6.43) X 10 -5

--0.0269 4- 0.106

--3.04 4- 9.52

--208 4- 969

(--0.05 4- 0.32) X 10 -l°

(--0.36 4- 0.02) X 10 -1°

(--0.16 4- 0.17) X 10 -I°

(--0.06 4- 0.30) X 10 -7

(1.04 4- 0.72) X 10 -H

0.02 4- 0.30

--0.007 4- 0.008

(--0.03 4- 0.15) X 10 -3

0.004 4- 0.007

(--0.01 4- 0.15) X 10 -3
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Table 10. Comparison of compressed residuals for Solutions III, IV and V

Pass

Solution III

Mean

residual

(Hz)

RMS

residual

(Hz)

Receiver(11)

9/5-9/6

9/6-9/7

9/7-9/8

9/8-9/9

9/14-9/15

9/22-9/23

9/23-9/24

9/29-9/30
10/6-10/7

lO/14-1o/15

10/24-10/25

I0/27-I0/28

11/5-11/6
11/1o-11/11

11/17

11/26

t 2/1

12/7

0.0008

--0.0012

--0.0014

--0.0015

0.0003

0.0042

--0.0009

--0.0033

0.00041

--0.0010

0.0018

--0.0033

--0.0015

0.0008

--0.0018

--0.0012

0.0011

0.0008

0.0115

0.0145

0.0145

0.0142

0.0150

0.0073

0.0149

0.0052

0.0062

0.0166

0.0086

0.0060

0.0043

0.0056

0.0057

0.0050

0.0142

0.0059

Receiver(12)

10/14-10/15 --0.0016 0.0109

10/24 0.0044 0.0076

Solution IV Solution V

Mean RMS Mean RMS

residual residual residual residual

(Hz) (Hz) (Hz) (Hz)

0.0007

--0.0023

--0.0010

--0.0005

0.0015

0.0036

--0.0025

--0.0040

0.0015

--0.0009

-0.0002

--0.0027

--0.0033

0.0008

--0.0021

--0.0009

0.0020

0.0004

0.0115

0.0147

0.0145

0.0140

0.0151

0.0069

0.0149

0.0056

0.0063

0.0166

0.0084

0.0057

0.0052

0.0053

0.0057

0.0047

0.0147

0.0063

--0.0001

--0.0023

--0.0015

--0.0005

0.0011

0.0048

--0.0012

--0.0023

0.0032

0.0002

0.0001

--0.0028

--0.0034

0.0001

--0.0021

--0.0031

--0.0013

--0.0008

0.0114

0.0146

0.0145

0.0141

0.0149

0.0077

0.0148

0.0046

_.0070

0.0166

0.0084

0.0057

0.0055

0.0053

0.0057

0.0058

0.0147

0.0066

--C.0018 0.0110 --0.0006 0.0109

0.0032 0.0068 0.0033 0.0069

(Solutions IV and V) are displayed in Table 9 where

k_e is also included in the solution. It is given an a-priori
uncertainty of 10 km3/sec z which is more than 10 times

larger than the expected uncertainty from the Ranger

determination (Cf. Eq. 26). Thus, the least-squares pro-
cedure is free to apply fairly large corrections to both
k_m and k_e in order to fit the cruise data. Certainly, an
independent determination of the mass of the Earth plus

Moon is not possible because the spacecraft is too far
from the Earth at the beginning of the data. Therefore,

the a-posteriori uncertainties in k_,, and k_e should be
quite large for Solutions IV and V, but a computation of
the uncertainty on _ or/_-1 from these large uncertainties

and the associated correlation paE, aM(Eq. 173) should be
comparable to that from Soutions I and III.

The two Solutions with k_e included as a free param-

eter differ in that one, Solution IV, assumes a realistic

a-priori uncertainty on A of __+100 km and the other,

Solution V, assumes an error of ±1000 km as in Solu-

tion I. The latter solution represents a determination of

with the least a-priori information on other constants

that significantly affect the representation of data. In this

sense it is the most independent determination of tz from

the Mariner II data.

To summarize the results of the four solutions for _, the
quantities necessary to compute the mass ratio and its

uncertainty by Eq. (172) and (173) are given in Table 11.

The correlation co eefflcient is taken from the covariance

matrix (ArWA + F_ 1 )-1 associated with each solution.

Two significant facts are apparent from the results in

Table 11. The first is that the correlation between k_e and
k 2 in Solutions IV and V is of the right sign and magni-#m

tude to partially cancel the relatively large errors in the

two gravitational constants and to produce an error in t_

which is almost equal to that from Solutions I and III.
This agreement in the four solutions is further evidence

that the Mariner data provide an independent measure-

ment of the mass ratio _. The second fact of importance

is that the value obtained for _ is quite stable for fairly
large variations in k z and A. Therefore, the value of _-a

ge
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Table 11. Computation of mass ratio/_

Parameters Solution I Solution III Solution IV Solution V

k_e(km3 /sec 2)

k_m(km3/sec 2)

_r_E,/GE

O'GMIGM

POE, GM

_rJ lz

ij.-]

398601.27

4902.7840

0

13.994 X 10 4

0

13.994 X 10 -6

81.3010 -t- 0.0011

398601.27

4902.8442

0

13.756 X 10 -_

0

13.756 X 10 -6

81.3000 ± 0.0011

398598.51

4902.7824

23.893 X 10 -6

21.551 X 10 -6

0.76480

15.739 X 10 -6

81.3005 + 0.0013

398598.23

4902.8096

23.882 X 10 -6

21.634 X 10 -6

0.76235

15.831 X 10 -6

81.3000 ± 0.0013

from the Mariner data lies somewhere in the region

81.800 to 81.801. In selecting a value in this region there

is no overwhelming reason to pick one of the values of

over the others. All fits to the data are quite good as can

be seen from the mean and RMS residuals given in

Table 10. Also, the functions S(X) and Q(X) offer little

help in the selection of a value, except that Solutions II,

III and IV are all about equal and seem to fit the data

slightly better than Solution I. The values of the least-

squares functions are

Solution S(X) Q(X)

III

IV

V

464.58

468.18

470.12

464.97

468.48

470.51

which can be compared with S(X) = 595.70 and Q(X) =
596.18 for Solution I.

The selection of a value for _, then, is made on the

basis of Solutions III, IV and V by taking a simple aver-

age of the three values and assigning the largest of the

standard deviations, that from Solutions IV and V, as

the a-posteriori uncertainty on the ratio. The result is

_-_ = 81.3001 ___0.0013

4. Determination of astronomical unit and the mass of

Venus. In Section III-F-2, the nature of the determination

of the mass of Venus M_ and the astronomical unit A is

discussed in terms of the shape of the Doppler curve

during planetary encounter. The mass M_ is determined

by combining this curve with the data before and after

encounter and unless the cruise and encounter data are

both used, the mass is dependent on the value chosen

54

for A. With the combination of the cruise and encounter

data, the two constants become independent.

As a first solution for the mass, only the encounter data

are used and the a-priori value of A is included in the

determination with its uncertainty of ±100 km. The re-
sult is shown in Table 12 as Solution VI. The a-priori

values of the parameters are from Solution III with the
cartesian coordinates or orbital elements now referred to

an epoch of Dec. 8, 121:0 E.T. instead of the Sept. 5 epoch

of the cruise solutions. The epoch is moved closer to the

data in order to achieve greater numerical stability in

the encounter solutions. Increased stability results be-

cause the corrections in the position and velocity at the

Dec. 8 epoch must be larger than at the Sept. 5 epoch to

produce the same effect on the Doppler residuals. Con-

versely, numerical rounding errors in the computation of
corrections to the coordinates have less effect on the

residuals for the later epoch than for the earlier one, and,

as a result, the entire least-squares process is less sensi-
tive to numerical errors in the coordinates.

The numerical values of the constants in the second

column of Table 12 are slightly different than in Solu-

tion III of Table 9 because the values were taken from

different iterations in the numerical iterative procedure

that minimizes the function Q(x) as described in Sec-

tion IV-A-1. However the differences are not significant.

The a-priori uncertainties for the parameters in the solu-

tion for M_ are all large to allow as much freedom as

possible in the determination of a value for M_ from the

encounter data with an adopted value of A. The low-

thrust and solar radiation parameters must be included

in the encounter trajectory computation since the cruise

solutions have shown they are significant. Their values as

determined by Solution III are included so as not to bias

the solution for M_ with erroneous low-thrust forces. The

a-priori uncertainties on fl, f2, [a and T are about three

times the a-posteriori uncertainties of Solution III and
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Table 12. Solution for the mass of Venus with the encounter data alone

Parameter A-priori Solution VI

value correction

x (km)

y (km)

z (km)

(km/sec)

_, (km/sec)

_, (km/sec)

k_ (km3/sec2)

MI
A (km)

x r (km)

Yr (km)

z r (km)

fl (km/see2)

f2 (km/sec2)

f3 (km/sec2)

al (sec-])

o¢2 (sec -2)

,),

R11 (km)

R12 (km)

)_12

--37434344 '1' 0.0

--31350426 "1" 0.0

--10175342 "1" 0.0

--7.1521619 ! 1.0

-- 11.402508 "1" 1.0

--5.7124045 4- 1.0

4902.8534 "1" 0.0

(0.24471118 "1" 1.0) X 10 -5

149597890 '1' 100

0.0 "1" 108

0.0 ___ 108

0.0 + 108

(--0.013 '1' 0.868) X 10 -lo

(-0.352 "1" 0.058) X 10 -l°

(--0.154 "1" 0.458) X 10 -l°

(--0.004 -t- 0.0) X 10-?

(0.776 "1" 0.0) X 10 -14

--0.0156 "1" 0.549

6372.0104 "4- 0.0

243o15064 '1' 0.0

6371.8819 '1' 0.0

243.019452 _ 0.0

m

m

m

(--0.59 ± 0.57) X 10 -4

(1.09 "1" 0.78) X 10 -4

(--1.28 "1" 0.38) X 10 -4

(8.29 "1" 0.11 X 10 -io

--14 "1" 100

--517 "1" 41

102 ___ 48

41 "1"19

(-0.335 -t- 0.868) X 10 -1°

(0.002 '1' 0.058) X 10 -Io

(0.027 _ 0.458) X 10 -1°

-0.007 "1" 0.549

thus are quite conservative. Even so, the encounter data

alone cannot improve these constants, but their inclusion

in the solution assures a more realistic computation of the

covariance matrix for the parameters. The a-posteriori

uncertainty on M'_, therefore, contains a contribution
from uncertainties in the low-thrust and solar radiation

forces.

The inclusion of the position coordinates of the planet

in the solution requires some explanation. Clearly, the
encounter data alone are not sufficient to determine

the position of both Venus and the spacecraft with re-

spect to the Sun or Earth. Therefore, it makes no dif-

ference whether the planet is held fixed and the position

of the spacecraft at epoch is varied to fit the data, or

whether the geocentric spacecraft position is held fixed

and the planet is moved to achieve the same fit to the

Doppler curve. The latter alternative is chosen here

because the spacecraft position has been determined

from the cruise data and it is of interest to see how much

the planet must be varied from its nominal position as

given by the ephemeris compiled by JPL (Ref. 23) in

order to properly represent the Mariner II motion. The

heliocentric position of Venus in true equatorial co-

ordinates at 1962, Dec. 14, 2@:0 E.T. is

X_ = -0.14378455 (a.u.)

Y_ = 0.63894646 (a.u.)

Zv = 0.29684580 (a.u.)

and the corresponding geocentric coordinates referred to

the true equator and equinox of data are

a = 14h51In88._382

= - 13°39 ' 28':83

r = 0.38640'258 (a.u.)

The epoch (Dec. 14, 20_:0 E.T.) for the corrections to

the position is within a few minutes of the time of closest

approach of the spacecraft to the planet. In Appendix D,

the method is described which propagates corrections at

this periapsis epoch into the ephemeris at other times

during the time of the Mariner II data. The corrections

themselves can be interpreted in terms of corrections to

the geocentric true coordinates at the periapsis epoch.

JPL TECHNICAL REPORT 32-816 55



For example, the corrections of Solution VI yield the

following:

cos _±_ = - 1%2 ±0':18

_8 = 0"40 ___0707

±r = (290 ±39) km

In addition the Sun-Venus mass ratio from the solution is

(M_.)-' = 408506.68 ±1.8

It was pointed out in Section III-F-2 that the gravitational

constant GMv (km3/sec -")is more directly determined from

the Mariner data than the ratio M_.. Therefore, the result

for M_ and A can be combined into a determination of

= G,

Mv
k_, = -k,,_A3 (174)

and with the correlation coefficient pA, _, between A and

M_, given by the covariance matrix (ATWA + F;1) -1 , the

standard deviation ag,. on k_o can be computed accord-

ing to

- ao q,t + 9
aao - = ao + 6p.t.v M,-'_',

(175)

where ao is the standard deviation for M_. Solution VI

yields a correlation coefficient pa, v of -- 0.4013, and thus

from Eq. (174) and (175) we have

k 2 = (324872.17 ±1.30) km3/sec '-'
go

Two more encounter solutions are included in this sec-

tion in order to attempt a more definitive determination

of M_ and an independent determination of A. The pro-
cedure used is to combine the encounter solution with

those already obtained for the cruise data. Thus the co-

variance matrices from Solutions I and III are used as

a-priori matrices _ in the two new encounter solutions,

Solutions VII and VIII, where the epoch for the space-

craft coordinates is the Dec. 8 one of Solution VI. Be-

cause the covariance matrices for Solutions I and III are

referred to the Sept. 5 epoch, it is necessary to map the

Sept. 5 covariance matrix to the Dec. 8 epoch by means
of the matrix U discussed earlier (Section IV-E). The

transformation for the 6 X 6 coordinate portion F_ of the

covariance matrix is

G (t) = u G (to) (176)

where t and to represent the Dec,,:, 8 and Sept. 5 epochs,

respectively. The effect of using F_ from the cruise solu-
tions in these new encounter solutions is to statistically

combine the estimates of the parameters as determined
from each batch of data. The results should be the same

as determining the constants from all the data with the

advantage that the solutions are more numerically stable.

Solution VII is given in Table 13 and represents a

determination of M v from all the Mariner II data with an

adopted value of A, in particular the radar bounce value.

The first column lists the parameters, the second gives

the a-priori values and uncertainties from the results of

Solution III, and the corrections and a-posteriori uncer-

tainties are given in the third column. The encounter

parameters (Xv, Yo, Z,,, M_) that were not included in

Solution III are given very large a-priori errors. Also,

because of limitations imposed by the computer program

on the size and selection of parameters, the low thrust

parameters, al and a2, are not included in these encounter

solutions, although their values from the cruise solutions

are used in the orbit computation. The results of Solu-

tion VII can be summarized, as were those of Solution VI,

by the following list of correction and values.

Solution VII

cos 8±a = - 1'.'31 ±0:'05

±8 = 0:'86 ±0':21

±r = (409 ±39) km

(M_) -1 = 408509.95 ±1.8

pa, v = -0.4569

k_ = (324869.41 ±1.26) km3/sec 2

The last encounter solution, Solution VIII, uses the

covariance matrix from Solution I as a-priori information

and thus assumes an a-priori uncertainty in A of

±1000 km. The correction from this solution represents
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Table 13. Solution for the mass of Venus with a-priori information from cruise data

Parameter

x (kin)

y (kin)

z (km)

x (km/sec)

y (km/sec)

z (kin/see)

kg2m (krn3/sec 2)

M_
A (kin)

x v (km)

y_ (krn)

z v (km)

fl (krn/sec 2)

f2 (krn/sec 2)

f3 (kin/see2)

a_1 (sec -1)

a2 (sec-2)

3,

RH (kin)

)ql

R12 (km)

A-priori

value

--37434344 ! 106

--31350426 -t- 81

--10175342 -t- 221

--7.1521619 q-" 2.85 X 10 -5

--11.402508 -f- 1.23 X 10 -.5

--5.7124045 -t- 6.08 X 10 -.5

4902.8534 + 0.0675

(0.24471118 "t- 0.24) X 10 -5

149597890 "4- 100

0.0 -t- 108

0.0 ___108

0.0 -t- 108

(--0.013 -t- 0.35) X 10 -l°

(--0.35 ___ 0.02) X 10 -l°

(--0.15 __. 0.15) X 10 -l°

(--0.004 __. 0.o) X 10 -7

(0.776 -4- 0.0) X 10 -14

--0.0156 ___0.333

6372.0103 4- 0.0076

243.15064 ± 0.15 X 10 -3

6371.8819 ± 0.0069

243.19452 ± 0.15 X 10 -3

Solution VII

correction

--97 q- 18

--76 q'- 22

59 -f- 65

(1.13 4- 0.69) X 10 -5

(--0.83 -t- 0.57) X 10 -5

(--5.33 -t- 0.98) X 10 -5

0.0473 4- 0.058

(8.09 4- 0.11) X 10 -l°

--38 ± 98

--581 -t- 19

--42 4- 28

137 ± 64

(0.035 -t- 0.052) X 10 -1o

(0.016 4- 0.014) X 10 -10

(0.051 -t- 0.037) X 10 -l°

0.003 q'- 0.061

--0.0059 -t- 0.0051

(0.07 4- 0.09) X 10 -3

0.0049 4- 0.0047

(0.08 4- 0.09) X 10 -3

a determination of A from the Mariner data. Table 14

gives the results for Solution VIII in exactly the same
form as Table 13. A tabulation of results for this solution

also includes a value for A.

Solution VIII

cos _±a = --1':16 ±0':08

A8 = 0':20 ±0'.'39

Ar = (659 ± 143) km

A = (149597032 ±485) krn

(M_) -1 = 408505.03 ±4.26

pA, v = --0.87770413

k_, = 324867.27 ±1.63 kma/sec 2

Note that with an increase in the uncertainty in A the

correlation coefficient pa, v also increases, which tends to

keep the uncertainty in k_ nearly equal to that of the

preceding two solutions. This fact supports the conten-

tion that the Mariner data determine k_ directly rather

than M,;. In this last solution, where A is relatively un-

certain, the percentage error in M_ is 10.4 >( 10 -_ as com-

pared to 5.03 X 10 -G for k_,,. With an uncertainty in A of

±100 as in Solutions VI and VII, the percentage uncer-

tainty is about 4 X 10-6 in both M_ and k _v.

Again, as in the case of the Earth-Moon mass ratio, it

is not easy to select values for the constants from one of

the solutions. They all fit the data fairly well as can be

seen from the table of mean and RMS residuals (Table 15).

The functions S(x) and Q(x) are also about the same.

Solution S(x) Q(x)

VI

VII

VIII

243.10

157.84

155.53

243.23

161.03

157.52

Rather than choose values for M_ and A from the re-

suits of these encounter solutions alone, a determination
of the constants from both the cruise and encounter data

in one solution is carried out in the next section and
values are selected there.
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Table 14. Solution for the mass of Venus and the astronomical unit with a-priori information from cruise data

A-priori Solution VIII

Parameter value correction

x (km)

y (km)

z (kin)

x (km/sec)

y (km/sec)

z (km/sec)

k_m(km3/,ec2)

M_
A (km)

x v (km)

Yv (km)

zv (km)

f] (km/sec 2)

t'2(km/sec2)

f3 (km/sec2)

_l (sec-])

_2 (sec -2)

,),

Rll (km)

R12 (km)

--37437345 _ 103

--31350423 __ 87

--10175351 ± 220

--7.1521562 "1" 3.04 X 10 -5

--11.402507 "1" 2.66 X 10 -5

5.7124031 "1" 6.80 X 10 -5

4902.8279 "1" 0.0686

(0.24471118 "1" 0.24) X 10 -5

149597740 "1" 970

0.0 -t- 108

0.0 "1" 108

0.0 "1" 108

(-0.019 "1" 0.366) X 10 -l°

(-0.347 -I- 0.020) X 10 -]o

(--0.147 "1" 0.151) X 10 -]o

(-0.0157 "1" 0.0) X 10 -7

(0.7601 "1" 0.0) X 10 -]4

0.0067 -t- 0.351

6372.0103 "1" 0.0077

243.°15061 "1" 0°.15 X 10 -_

6371.8823 "1" 0.0070

243.°19450 "1" 0.015 X 10 -3

24.0 -I- 57

--28.3 -I- 46

--169 -t- 114

(3.17 -t- 1.06) X 10 -5

(2.68 -I- 0.85) X 10 -5

(-0.75 -t- 2.47) X 10 -5

0.0065 -t- 0.0619

(8.33 "1" 0.25) X 10 -]0

--708 "1" 485

--672 "1" 74

--212 ,1, 93

--145 ,1, 136

(--0.151 "1" 0.124) X 10 -]o

(0.001 X 0.015) X 10 -1°

(0.114 "1" 0.052) X 10 -[0

0.180 ___ 0.123

0.0009 "1" 0.0058

(0.°076 "1" 0.088) X 10 -3

0.0009 ,1, 0.0053

(--0.072 ,1, 0.090) X 10 -3

Table 15. Comparison of compressed residuals for Solutions VI, VII and VIII

Pass

12/8

12/11
12/12
12/13

12/14

12/15
12/16
12/17

12/19
12/20

Solution Vl

No.

Data

50

57

184

19

Mean

residual

(Hz)

--0.0003

0.0049

0.0023

0.0047

RMS

residual

(Hz)

0.0086

0.0103

0.0130

0.0126

Mean

residual

(Hz)

--0.0012

0.0045

--0.0012

--0.0033

RMS

residual

(Hz)

0.0081

0.0104

0.0134

0.0118

Mean

residual

(Hz)

--0.0030

0.0035

--0.0021

--0.0043

42

35

48

49

27

43

--0.0045

--0.0090

--0.0141

--0.0064

--0.0051

--0.0067

0.0231

0.0169

0.0207

0.0184

0.0078

0.0103

--0.0063

--0.0018

--0.0089

--0.0020

--0.0033

--0.0070

0.0102 --0.0057

0.0137 --0.0016

0.0173 --0.0089

0.0170 --0.0034

0.0066 --0.0026

0.0103 --0.0055

Solution VII Solution VIII

RMS

residual

(Hz)

0.0082

0.0105

0.0134

0.0123

0.0098

0.0137

0.0172

0.0173

0.0064

0.0091

5. Simultaneous solution for all constants. Solutions VII

and VIII of the last section are representative of a least-

squares fit to all the data. However, it is necessary to

rely on a statistical combination of estimates in order to

obtain a solution. If the corrections are so large, as they

are in fact, that a linear correction to the a-priori values

is not possible, then the corrected parameters must be

used to recompute residuals and the least-squares pro-

cedure applied again iteratively until the function Q(x)

is at a minimum value. Unfortunately, the numerical

accuracy of the computer program does not permit an

accurate computation of residuals during and after the
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encounter of the spacecraft with Venus and the iterative

process fails. The differential coefficients of Table 5 can
be used to demonstrate the sensitivity of the computation

of Doppler residuals to numerical errors in the position
of Venus.

Suppose, optimistically, that the heliocentric position
coordinates of Venus are numerically accurate to eight

significant figures. Then, the numerical error in the posi-
tion is about 0.5 km and since some of the differential

coefficients in Table 5 are on the order of 0.2 to 0.3

Hz/km, the numerical error in the residuals can become

as large as 0.15 Hz which is about an order of magnitude

larger than the expected size of the residuals from the

least squares determinations. The effect of all this is that

if a solution is attempted with all the Mariner data, a set

of parameters can be found that actually are very close

to those that minimize the function Q(x); but the rela-

tively large and erroneous residuals around planetary

encounter and beyond indicate further small corrections

to the parameters which, when used to compute new

residuals, simply produce another set of erroneous values

and the process never converges. In all this, the residuals
before encounter behave as well as those of the cruise

solutions of Section V-D-1 and V-D-3 and once the

parameters are in the region of the least-squares solution

they remain small.

In effect, then, a solution with all the data is impossible
within the framework established for the solutions of the

previous sections. Of course the encounter solutions are

affected by this same sort of numerical error in the resid-

uals, but because of the relatively short span of data and

the favorable location of the epoch for the spacecraft

coordinates it is possible to find values for the parameters
that smooth out some of the numerical errors in the resid-

uals. That the parameters of the last section are to some

extent based on a fitting to numerical errors is not par-

ticularly alarming, because the numerical errors are in

all cases two, three or more significant figures beyond the

a-posteriori uncertainties assigned to the parameters.
However, some sort of simultaneous solution for all the

data does seem indicated if complete confidence that the

parameters are really those which minimize Q(x) is to be
obtained.

Fortunately, such a solution is possible by relying on

the classical differential correction process for the solu-

tion which can be justified since the solutions of the

previous sections provide parameters close enough to the
simultaneous solution that a linear correction is valid.

Also, by fitting all of the data by the iterative procedure,

even though convergence cannot be achieved, it is pos-

sible to obtain parameters such that their deviations from

the least square solution are in the linear region. The

procedure for obtaining the solution of this section, there-
fore, is as follows.

First, the best possible determination of the parameters

is accomplished by the iterative method and residuals are

computed. Next, a linear correction is computed by Eq.

(49) but it is not applied to the parameters for a new

computation of residuals. Instead the new residuals are

computed by the linear formula

±z (new) = _z (old) - Aax (175)

where _xx are the corrections to the parameters and A is
the matrix of differential coefficients. The linearized resid-

uals _xz (new) represent the residuals obtained from the

least squares values of the parameters in the absence of
numerical errors.

The actual linear solution (Solution IX) for the Mariner

data is shown in Table 16. The a-priori values of the

parameters in column (2) represent an iterative solution

using all the data and the a-priori uncertainties are set

quite large to allow an independent solution for the

constants and position of Venus. The corrections and

a-posteriori uncertainties are given in column (3). Note

that the corrections are small with respect to the uncer-

tainties. The linearized residuals are listed along with the

data in Appendix E. Finally, the correlation matrix asso-

ciated with this solution is given in Table 17 so that the

complete a-posteriori covariance matrix is available for
future reference.

The results of Solution IX are tabulated here for com-

parison with previous solutions.

Solution IX

k_,, = (4902.540 ±0.060) km3/sec _

_t-1 = 81.2998 ±0.0010

cos _,¢_ = 1"45 ±0.11

48 = 1':11 ±0'.'28

ar = (456 ±95) km

A = (149597546 ±373) km

(M ; )-1 = 408503.49 ±5.2

pA, v = -0.92174

k_v = (324872.56 ±2.14) kmVsec 2
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Table16. Solutionfortheconstantsfromcruiseandencounterdata

A-priori Solution IX

Parameters value correction

x (km)

y (km)

z (kin)

_c (km/sec)

y' (km/sec)

(km/sec)

k_m(km3/sec2)
M[
A (km)

x v (krn)

Yv (km)

z_ (kin)

fl (krn/sec2)

f2 (krn/see2)

f3 (km/see2)

Oq (sec -1)

o_2 (sec -2)

RII (km)

XI]

R12 (km)

Xl2

--1424212.8 ± 106

--1939480.1 ± 106

--100617.21 -4- 106

--1.7444942 -4- 1.0

--2.4233973 -4- 1.0

--0.11009455 -4- 1.0

4902.9007 -4- 100

(0.24479208 _ 1.0) X 10 -5

149597850 -4- 5000

--581.64 -4- 1000

--42.05 -4- 1000

136.88 -t- 1000

(0.022 ___ 1.0) X 10 -l°

(--0.336 -4- 1.0) X 10 -l°

(--0.103 -4- 1.0) X 10 -l°

(--0.004 -4- 0.0) X 10 -7

(0.818 -t- 1.0) X 10 -14

--0.0128 -4- 1.0

6372.0044 -4- 0.0

243°15057 -4- 00.0

6371°.8770 -4- 0°.0

243°.19444 -4- 0.°0

-- 13.8 -4- 34.2

-- 17.0 -t- 44.9

27.5 -4- 40.6

(0.54 -4- 0.80) X I O -5

(0.32 -t- 0.60) X 10 -5

(1.79 -4- 1.83) X 10 -5

--0.0467 -4- 0.060

(0.387 -4- 0.314) X 10 -l°

--304 -I- 373

--73.68 -4- 77

-- 12.68 _ 58

56.56 -4- 82

(0.261 -t- 0.149) X 10 -1°

(--0.007 -4- 0.015) X 10 -1°

(--0.111 -4- 0.066) X 10 -l°

(--0.262 -4- 0.173) X 10 -14

--0.271 -t- 0.149

The results of Solution VI, VII, VIII and IX define the

values of A, k_,,, and the ephemeris corrections that are
associated with the Mariner II data. Solutions VI, VII

and IX are quite consistent in their results and only

Solution VIII seems to give significantly different results

for the constants, although the disagreement is not much

more than a one-sigma deviation from the values indi-

cated by the other three solutions. The slight disagree-

ment of Solution VIII is probably caused by the fact that

the least-squares fit of Solution I, which is used as a-priori

information in Solution VIII, is not as good as that of

Solution III, which is used as a-priori information in

Solution VII. Thus, just as Solution I was not considered

in arriving at a final value for t' in Section V-D-3, it is

also neglected here by ignoring the results of Solu-

tion VIII and by averaging the other three solutions to

obtain the following values for the constants. The uncer-

tainties are again, as in Section V-D-3, taken as the largest

of the individual a-posteriori uncertainties from each

solution.

A = (149597546 ___500) km

k_, -- (324871.5 ±2.5) km3/sec 2

6O

cos 8±a = -1':45 +--0':2

±8 = 0'.'80 --+0':4

±r = (2.56 +-0.97) )< 10-" a.u.

The mass ratio (M_,) -_ from the immediately preceding
results is

(M") -_ = 408504.8 -+5.5

and the true geocentric equatorial coordinates of Venus

for 1962, Dec. 14, 20.h0 ET are, with ±a = -0_100

-+07015:

a = 14h51m58_.282 ±0_.015

8 = -- 13°39'28':03 -+0'.'4

r ---- 0.038640514 ±0.97 X 10-" a. u.

E. Summary of Results

The values of the constants t_, A and M__, as determined

from the Mariner II data are given in Section V-D-3 for t_
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Table 17. Correlation matrix, reduced to its lower half, for Solution IX (all data)

Parameters x y z /c _, i GM

x

y

z

GM

M_
A

X_

Yv

ZV

ft

_2
_3
_2

3'

1.00

0.98

--0.27

--0.06

0.09

0.83

--0.33

0.93

--0.93

0.84

--0.72

--0.22

0.40

--0.69

--0.68

0.17

--0.57

1.00

--0.25

0.06

--0.01

--0.82

--0.35

0.91

--0.91

--0.80

-- 0.70

--0.21

0.35

-- 0.75

--0.67

0.16

--0.54

1.00

0.16

-- 0.07

0.00

0.04

--0.23

0.33

0.32

0.52

--0.13

--0.17

0.00

0.08

-- 0.02

0.18

1.00

--0.99

0.37

0.07

0.22

0.20

0.38

0.17

0.05

--0.63

--0.62

0.25

0.00

0.43

1.00

0.46

0.04

0.26

--0.23

--0.40

--0.16

--0.11

0.64

0.58

--0.29

--0.02

--0.46

1.00

0.22

0.84

0.86

0.80

0.63

0.42

--0.47

0.40

0.62

--0.07

0.53

1.00

--0.27

0.19

0.12

0.05

0.03

--0.20

0.22

0.23

0.23

0.28

1.00

--0.92

--0.95

--0.72

-- 0.06

0.57

--0.54

--0.82

0.37

--0.70

M_ A

1.00

0.92

0.91

0.36

--0.31

0.61

0.57

--0.27

0.43

Parameters x_ Yv zv fl f2 f3 _2 7

1.00

0.44

--0.05

0.52

0.26

--0.30

0.13

1.00

0.22

--0.18

--0.01

1.00

0.80

0.05

--0.57

0.39

0.76

--0.51

0.64

1.00

--0.46

0.93

1.00

0.47

0.30

--0.43

0.46

--0.46

1.00

--0.21

x_

Y_

ZV

fl

_2

7 1.00

1.00

0.26

--0.84

0.18

--0.96

and in Section V-D-5 for A and M" Those values are
r'

tx-1 = 81.3001 _____0.0013

A = (149597546 _____500)km

(M",)-1 = 408504.8 ___5.5

The primary purpose of this section is to investigate what

effect these values of the constants have on the system of
astronomical constants. In Section III-E and V-D-2 the

basis for such an investigation is given and the only addi-
tional information, besides the preceding values, needed
from the Mariner determination is the correlation coeffi-

cient pgm, a between k_,, and A. Then, the formulas of
Section III-E and V-D-2 can be used to compute correc-
tions and uncertainties in all constants affected by tt,

A and M,_. The correlation pgm,a is taken from Solution IX
as given in Table 17.

pgm,a = 0.1963

The other important correlation p.t,1, between A and MI_.
has already been used to compute the uncertainty in

k_,. which is actually a more fundamental constant than
M_. for the Mariner II data. The correction and uncer-

tainty in M _., or k_,., does not affect any of the derived
constants in the IAU list. Therefore the analysis of the

mass of Venus is complete, and the value of k _,. from the
Mariner data is as given in Section V-D-5

k_,, = (324871.5 ±2.5) km3/sec '-'

The value for the mass, M,': can be expressed in the

notation of Section III-E along with A and g according
to Eq. (20), (21), and (22).

A

A = (- 16.40 ±3.3) X 10-_,

M_, = (83.8 ___14) X 10-6

_= (-1.2 ±16) X 10-6
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where the values A, M ' and "_ which are corrected by
r

, M,, and ), respectively, are given in Section III-E.

Now Eq. (25) through (33) are used to compute other

corrections as defined in Section Ill-E, and the corre-

sponding uncertainties are obtained from Eq. (165)

through (171). Again, it is important to remember that
all corrections and uncertainties are based on an assumed

value for the velocity of light c, that was adopted by

the IAU, and thus are actually only valid for units of

light-seconds. If one is interested in expressing the results

in terms of the standard meter, then the uncertainty in c

enters into all constants that have a length dimension.
This is not done here, however, and the corrections from

the Mariner II data are the following:

2_'g_ = (-5.3 ±2.0) × 10 ';

2_g,,, : ( - 6.5 + 16) X 10-'

'_, = (-16.44--+3.3) X 10-'

2_"g_ = (50.01 ±9.9) ;( 10 -'_

= (-1.77 ±0.67) × 10-'

= (13.44 --+15.6) X 10-"

_¢ = (14.60 ±3.4) X 10 ';

- (40 ±400) × iO-'

In addition the station coordinates for the transmitter

(Station 12) and the receiver (Station 11) as determined

by the Mariner II data are given as follows:

R11 = (6372004.4 ±5.1) m

)tll ---- 243°09'02':05 ±0':32

RI__ = (6371877.0 ±4.7) m

_,._,= 243°11'39"/98 ±0".'32

Because UT1 is used to compute the local sidereal time

(Cf. Section IV-C-3) the longitude is referred to the

instantaneous pole during the period of Mariner II.

Actually, the radius is not determined directly with

the Doppler data, but instead the distance R cos 4/of the

station from the Earth's spin axis is measured by the

diurnal component in the data. The geocentric latitudes
used in all the solutions are

_, = 35?208070

ff_ = 35?117382

and, as a consequence, the distance from the spin axis for

the stations during the period of the MarinerII data are

R,1 cos 4"_, = (5206&33.6 --+4.2) m

RI_ cos _'_ = (5212037.6 -+3.8) m

Finally, the true geocentric equatorial coordinates of

Venus for 1962, Dec. 14, 20._0 ET from Section V-D-5

are repeated here for completeness:

= 14"51'"587 282 _+0_015

= -- 13°39'28:'03 ±0":4

r = 0.38640514 ±0.97 X 10-' a. u.
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Appendix A

Expansion of Doppler Formula

The rigorous Doppler formula (Eq. 75) derived in

Section IV-B-1 is expanded here to yield Eq. (81), the

Doppler formula used for the actual numerical repre-

sentation of the observations. First of all, Eq. (75) is

expanded to terms in 1/c 5 by a straightforward appli-
cation of the binomial series in the following form.

(l+x) n=l +nx+ n(n - llx. _ +...
2_ (x-_< 1)

(A-l)

The series for Vob/kvt, is accordingly given by

kvtrv°'-'-L=1- pl +c/_5 + c1__I/_1/_2_ _._pcosGcos G

- _l_p cos ¢1 cos Cp + _ cos 5Op

1 • "2 1+ _ cos5¢1 + T (s_- _1) - (_2 - _1)
_1

(A-2)

The relativistic terms in Eq. (A-2) involve the relative

motion and potential of the station at the time of trans-

mission and reception (tl and t2) but not the velocity or

potential of the spacecraft at G. Therefore, their contri-

bution is clearly of higher order than 1/c 5 and can be

neglected. Then, Eq. (A-2) takes on the following form:

rob

kvtr

-1 /51 + _62 + 1
c -_7 [/_1/_5 + sp cos Op(sp cos 0p

-- _5 cos 05) -- _1 cos ¢1 (_p cos Cp -- _1 COS ¢1)]

(A-8)

We now convert from heliocentric to geocentric coordi-
nates. Designate the heliocentric coordinates of the Earth

by rE and all geocentric coordinates by primed letters.

Then the heliocentric positions of the station at ta and t_

and the spacecraft at tp are given by

lel(tl) : 121 (tl) q- rE(t1) (A-4)

(A-5)

rp(tp) = G (6) + rE(tp) (A-6)

The two heliocentric range vectors pl and ps, which are

defined by Eq. (61) and (71), are given in terms of the

geocentric range vectors p'l = r'p(tp) - r_ (tl) and p; = _(tp)
-- r_ (t2)by

P_ = P'l + rE(tp) - rE(t_) (A-V)

02 = P'5 + re(t,) -- r_(t2) (A-S)

or to the first order in tp - t, and tp - t5,

P_ = P'x + i-_(tp - tl) (A-9)

P5 = P" + i'E(tu - t2) (A-10)

but

tp -- tl -- p_ (A-11)
C

so that

tp - t_ = - p_ (A-12)
C

pl

pl = p'_ + --Z i-_ (A-13)

, P5
p5 = P2 -- -b- i-_ (A-14)

Eq. (A-13) and (A-14) represent the transformation be-

tween the geocentric and heliocentric range vectors to the

order 1/c. Of course in the 1/c 5 term of Eq. (A-3), it is

not necessary to make the distinction between p and p'

because the difference is of the order 1/cL However, the

1/c terms must be carried in transforming (/3_ + IJ_)/c to

geocentric coordinates.

Consider the terms inside the brackets of Eq. (A-3) first.

From the definitions of Section IV-B-1 for _p cos Cp,

_ cos ¢1, _p cos 0p, and s5 cos 05, we have

_pcos O_- _5cos 05 = t35 (A-15)
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_p cos q,p - sl cos 41 = P_ (A-16) Substitute Eq. (A-22) and (A-23) into Eq. (A-19).

also

P2

_vcos 8v = -_-" [/'; (t_) + _-_(tp)] (A-17)

s_cos41 = p_. [_'_(t,) + _(tl)]
Px

(A-18)

Substitute Eq. (A-15) for (A-18) in Eq. (A-3) to obtain

kv,r o _ b__ + p2. [b;,(t,.)+ bE(t,)]

--_1 p_ " [b'_ (t,) + i'_(t_)]} (A-19)

The geocentric expression for (_ + [9_)/c to terms in 1/c'-"

can be obtained from Eq. (A-13) and (A-14) and their

derivatives. First, the magnitudes of p_ and 13, are re-

quired, or more appropriately, we want 1/p_ and 1/p2 for
terms in 1/c.

p, p'x c p_
(A-20)

11( 1 p2 )P-_ p, 1 + --c --'p_ ['_ (A-21)

Then

= 1 =., +1 d 1 /5_px.i.P p-S(pi'bl) P_ c -_(P_'_) c m

(A-22)

1 1 d 1 P2
c dt (p2"_E) +-- _p2"bEc pz

(A-23)

v°----L= 1 fi'_ + I_; 1 d
kvt_ -- - c c'-' dt (p_ -- p2)" bE

(A-M)

As in the case of the relativity terms the term in Eq. (A-24)

involving the small difference vector p_ - p_ is a 1/c 3

term and is neglected. Therefore, the form of the geo-

centric calculation of the Doppler shift is exactly like the
heliocentric form, at least to terms in 1/c 2.

In order to bring Eq. (A-24) into agreement with the

formula used for computing the Doppler data and resid-

uals, call the geocentric station vectors Rx(tl) and R_(tz)

instead of r'_ (ta) and r'z(tz ). Also substitute I_'o.+ R_ for

i-_ and set the scalar products Rx "R_ and R_ "R2 equal to
zero. These last two products are zero because the radial
rates Ra and R_ of the stations are zero. Then

.o_ 1 k'_ + #f, 1
-- " + (/5a/_2 + /5_ + H) (A-25)kvtr C _"

where

H = rp • p----_
(A-26)

The expression for H given in Eq. (82) contains the

relativistic term l ilz I" - I Rx 1_which was dropped early
in the derivation of this appendix. It is included in the

actual computational formula, however, but for Mariner II

the contribution is completely negligible. It is sensible

only if the transmitter and receiver are separated by
several thousand kilometers.
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Appendix B

Path of an Electromagnetic Signal Through the Troposphere

The refraction correction of Section IV-C-'2 requires

the evaluation of the effect of the atmosphere on the

range, or more precisely the time of transmission, be-

tween the spacecraft and the radar station. In particular

we are seeking a correction ±rp to range for the evalua-

tion of the cycle count correction given by Eq. (98).

The first assumption in deriving the refraction correc-

tion is that the wave is confined to a plane containing
the observer, the spacecraft P, and the center of the

Earth C. In other words a signal is sent from P and

arrives at S (Fig. B-l) or alternatively is sent from S
and arrives at P.

The time required for the signal to travel between

these two points is designated by At, and if the velocity

of propagation is given by c, then clearly in the absence

of an atmosphere

-- P [R_I__t
C

_÷_o

c

Fig. B-1. Radio propagation geometry

P

where p is the distance between S and P. However, if an

atmosphere is introduced, the velocity of propagation

will no longer be the constant c but will instead be a

variable v. The ratio of c to v is called the index of refrac-

tion n, which for empty space is identically equal to unity.

C
n = _ ___

\-- --/

1)

For the case where n is a variable the time of transmis-

sion At is given by

fs _ ds
At = -- (B-3)

l)

The element of arc length ds is expressed in terms of the

polar coordinates r and ¢ of Fig. B-1 by

or with

ds 2 = dr z + r2da/z (B-4)

_ _ d_ (B-5)
dr

ds
dr - V_ + r2a/_ (B-6)

Therefore, the time of transmission can be written as the

integral

At If r'= n VCi" + r2fi * dr (B-7)
cj R --r

As a matter of interpretation the coordinate rl of Fig. B-1

is the geocentric distance to the spacecraft at P. Thus,

the altitude H of P above a sphere passing through the
station S is

H=rl-R (B-S)

The index of refraction n in Eq. (B-7) is simply a func-

tion of the physics of the atmosphere and must be chosen

once and for all from a consideration of atmospheric

measurements. On the other hand, the function q_r is
arbitrary and for each function selected, a different value

of the time of transmission At can result. Therefore, in
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order to specify Cr, a physical law is introduced known

as Fermat's principle, which states that of all possible

paths, a wave will follow the particular path that makes
the time of transmission a minimum. From the calculus

of variations, the integral (Eq. B-7) is a minimum if the

Euler-Lagrange equations are satisfied (Cf. Ref. 36,

pp. 326--329).

_f d Df _ 0 (B-9)
_¢ dr _¢,

where the function f is the integrand of Eq. (B-7).

f = n _/1 + r2¢_ (B-10)

The restriction that the index of refraction n is inde-

pendent of the angle so that [ is also independent of ¢

is now applied, and the quantity _f/_tpr by Eq. (B-9) is a
constant k.

J_L - Mr"¢r - k (B-11)
_¢, k/1 + r-°¢_

An evaluation of this constant at r = R yields

k -- no R2¢_o
(B-12)

Vi + a2¢_o

where no is the index of refraction at the station location.

To obtain Cro, consider Fig. B-1. In terms of the elevation

angle -/the law of sines gives the relation

R cos V = r cos (-/+ ¢) (B-13)

and differentiating with respect to the radius r yields

d-/
r¢r sin (V+¢) = [R sin V - r sin (V+¢)] _ + cos (3,+q/)

(B-14)

When r = R, Eq. (B-14) reduced to

Redo = ctn rob (B-15)

where _,ob is the value of 7 when the wave reaches S, or

in other words, _/ob is the observed elevation angle. The

constant k from Eq. (B-12) and (B-15) is

k = no R cos "/oh (B-16)

66

Substitute this value of k into Eq. (B-11) and solve for _p,

to obtain the function de�dr

de _ no R cos "/oh

dr r Vn"r" - n'_ R "_cos _Vo_,

The observed range pob is defined by

(B-17)

and using the value of At from Eq. (B-7), there results

Using Eq.
written

fR _'1
pob = n _-f + r"¢_ dr (B-19)

with ¢r given by Eq. (B-17). An attempt to evaluate the

integral of Eq. (B-19) and to form the difference of pob

and the computed range p leads to numerical difficulties

in the subtraction of the two large quantities. However,

it is a simple matter to derive the variation

darp _ dpo_ dp
dr dr dr (B-20)

B-17) and (B-19) the variation dpo#dr can be

so that

dDob _ n-'r2_pr

dr no R cos rob
(B-21)

The variation dp/dr is derived from the law of cosines

applied to Fig. B-1.

p'-' = r 2 + R'-' -- 2r R cos ¢

dp de (B-23)
P-d-rr = (r -- Rcos¢) + rRsin¢--_- r

To avoid the degeneration of Eq. (B-23) at the point r = R

and ¢ = 0, the elevation angle is used instead of the

angle ¢ in Eq. (B-23). From Fig. B-1

- R cos ¢ = p Vr '_ - R '_cos __ (B-24)r

r sin _0= p cos ), (B-25)
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Thus,therangep cancels throughout Eq. (B-23) and

,_] Re eos2 rdp _ tprR cos r + 1 (B-26)
dr r e

The variation of Eq. (13-20) follows immediately by sub-

tracting Eq. (B-26) from (B-21):

d±rp (r-'n"- R cos r) _ Jl B_ cos'-' rdr - tp,. R no cos rob r2

(B-27)

The presence of both the observed elevation angle rob

and its computed counterpart in Eq. (B-27) complicates

the calculation of ±rp. However, the difference in the

two angles is less than 0.°2 even at an elevation angle

of 5 deg, and the error committed by failing to differen-

tiate between _/ and rob in Eq. (B-27) is less than one

meter for all elevations above 5 deg. Therefore, Eq. (B-27)

can be numerically integrated for various values of r

under the assumption that r = rob. The function Ipr is

given by Eq. (B-17) and an exponential model is chosen
for the index of refraction n.

n= 1 +(no- 1) e -"/"° (B-28)

The altitude H is equal to r - R and the selected numer-

ical values for no and Ho are

no- 1=3.40X10 .4

Ho = 7.315 km

The results of numerically integrating Eq. (B-27) from

H = 0 to H -= _ are shown in Fig. 7.
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Appendix C

Formulae for Matrices G and H

In this appendix, the differential coefficients which

comprise the matrices G and H are derived according to

the defining relation (Eq. 136) for the two matrices. The

differential of the Doppler data is required as a linear

combination of differentials in the position and velocity

of the probe and in the station coordinates. As a starting

point for the development of the coefficients, the formula

(Eq. 86) used to compute the Doppler data is differen-

tiated with a neglect of the second order 1/c'-' and rz terms.

dr(to,,) = K'l¢ v,,_ (d[9, + d[9._,) (C-!)
C

From Eq. (87) and (88) the differentials in range rate
can be obtained in terms of differentials in the range and

range-rate vectors.

A differentiation of Eq. (87) yields

p_ dp_ = p_. dp_ (C-2)

and from Eq. (88)

p_di,, + b, do, = p," db_ + i', • dp, (C-3)

Designate the unit vector p_/p_ by Li and combine

Eq. (C-2) and (C-3)

d/Si= 1 •
--_Z (p, - jb,L_) "dp, + L'db_

(C-4)

The differentials in the range and range-rate vectors are
now expressed directly in terms of differentials in the

geocentric probe coordinates (r_, r'p) and the station co-

ordinates (Ri, Ri) by means of the definitions p_ = r'p

-Ri and 15_ = i'v-Ri

d p, = dr; -dR_ (C-5)

d lb_ = d/-_, - dil_ (C-6)

No more is needed to define the differential coefficients

with respect to the probe coordinates rv' and rp," but. the
parameters in the station location vectors R, and R_ are

not the Cartesian coordinates themselves; instead the geo-

centric radius R_ and latitude _'_, and the longitude 2_
are selected for correction by the least squares process.

From the transformation equations (Eq. 91, 92, and 93)

between R, ¢p' and )_ and R = (X, Y, Z) we obtain dif-
ferential transformations which are written here without

the subscript i:

X
dX = --if- dR - Z cos Od,_ - Y dx (C-7)

Y
dY = -_ dR - Z sin Od4/ + Xd,_ (C-8)

Z
dZ = --_ dR + R cos 4/d4' (C-9)

dX = - _dY (C-IO)

dY = ,odX (C-11)

dZ = 0 (C-12)

where the differential in the local sidereal time is as-

sumed equal to the differential in longitude (do = dx)

which implies that the Greenwich hour angle is known

exactly. The angular rate o, is equal to 0 and is adopted as
the mean sidereal rate of the Earth's rotation.

Now the various differential expressions can be col-

lected together and interpreted as elements of the matrices

G and H, but first it is convenient to define a vector x_ as

the coefficients of dp_ in Eq. (C-4)

_i = p---/
(C-13)

Then the required expression for dp_ becomes

+ L._ dJc'p + Lv_ dO; + Lz_ d_;

+ _ dR_ + [}_¢ d_'_ + _x_ dx_

(C-14)
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where

bRi --

X_ Yi Zi Yi Xi
- - _., _ - _, _ - _. _ + _L._ _ - o,r_

(c-15)

/3yi = _i Z_ cos Oi + _i Z_ sin 8_ - r,i Ri cos ¢_

- _L_i Zi sin 0_ + _oLyi Z_ cos _ei (C-16)

/_xi =2r,_ Yi -- rUi Xi q- _L_i Xi + _L_i Yi

(C-17)

Of course, the coefficients are functions of the time and

are evaluated at the mid-point of the count interval associ-

ated with the particular observation of interest. Thus, if

coefficients are computed for a series of observations at

times t_, t2, ..., tN, the matrix G has the following form:

c = g_ + c_ (c-is)

where

Gi = K'k" vt'i
c

r_, (tz) r_, (t2) r_, (t2) L,, (tz) Lv, (t_) L,, (t2)

r_, (tN)r v, (tN)r_ (tN)L_ (tN)L_ (tN)L.-, (tx)

and the elements of the vector q in Eq. (186) are arranged

as q = (x_, yp, z_, _, 0_, zp). In a similar fashion, if the

elements of the vector s in Eq. (186) are arranged accord-

ing to s = (R_, 4"_, X_, Rz, 'b.'.,, X2) then the matrix H is

given by

)<

.

b_ (t_)
jby, (t_) /_x_ (t_) /_R__(t_) b___(t_) _x_ (t,) \

)/_y, (t=) /_x, (t,) /_e= (t,) bY= (t_) bx-_(t,)

i

bY, (tN) /_x, (tN) /_R'-'(t.v) PY2 (t,) px2 (try) /
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Appendix D

Formulae for Matrices e and

The matrices 0 and _I)defined by Eq. (140) can be de-

rived by forming the first variation of Eq. (119) with

respect to the geocentric coordinates r of the spacecraft

and all constants of importance to the orbit computation;

but first of all, it is convenient to define a vector function

h(x) of any three dimensional vector x such that*

X

h(x) - x:_

where x is the magnitude of the vector x. Then, a varia-
tion in the function h can be written in terms of a variation

in x as follows:

dh(x) = J(x) dx

where the 8X3 matrix J is given by

3XX T 1

/(x)- x_ x:' I:'

The superscript T indicates the transpose of the column
vector x so that xx r is a 8X8 matrix and I:, is the unit

matrix of order three.

Now the equations of motion (Eq. 119) can be written

in a compact form.

d2r

dt 2 - k_¢h(r) + k_,,_ [h(r¢) - h(r_,¢)]

+ k'_-A _ [h(r®) - h(r,,9)]

8

+ k"-'A _ _ M_ [h(r_) -- h(rpj)] + P
./=1

(D-l)

where k' is the Gaussian constant in units of a.u. and see.

Consider first the variation of the acceleration of the

spacecraft with respect to the position vector r, and

obtain the non-trivial part % of the matrix _D

( d2r )

*This definition was suggested by P. R. Peabody.

(D-2)

7O

Neglecting the variation in P, which is zero for no non-

gravitational forces and is negligible for small forces, the

explicit derivative of Eq. (D-l) for terms containing r is

= k_fl(r)_ - k_,,fl(r,,¢)_r,,¢

-k'2Aa J(r,,o)?:r,,®

s

- k,-'a:_G M 71(r,,)Dr,,
j=l

(D-3)

Because the geocentric coordinates of the Sun, Moon and

planets are all independent of the spacecraft coordinates

r, the variations _rv¢, _r_,® and Dr_,j are all equal to the

negative of the variation _r by Eq. (120). Thus, the 8 x 8

matrix ,I,_,is equal to

q'v = k_J(r) + k_,,_J(r,,_) + k'='AaJ(r,,®) + k":A a £ M_l(r,,2)
j-1

(D-4)

The complete 6×6 matrix 4, can now be constructed from

the definition _q = ¢p_/where q is the set of six position

and velocity coordinates in the spacecraft. Because the

coordinates are independent, the variations of i- with re-

spect to r and i- are, respectively, the null N:_ and unit I:_

matrices of order three; and also because the equations

of motion are independent of i-, the variations of the

accelerations with respect to i- produce the null matrix Na.

Therefore, the complete matrix q,, given in the partitioned

form of four 8X8 matrices, is simply

(Nj_ , I,_)= 4 -,_: (D-5)

The matrix O, defined by the.variations eZ/ = O_p of

the equations of motion with respect to the set p of con-

stants, can be partitioned into a null matrix Nk of order

8Xk, where k is the number of constants in p, and the

8 X k variational matrix 07, defined by _ = ®l,_p

(Nk) (D-6)o-- o;

It is best to consider the constants in p one at a time when

deriving the elements of Ok and to remember that each
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column of Ok represents the variation of ¥ (Eq. 119) with

respect to a particular constant. Again, as in the deriva-

tion of _I,, the implicit derivatives that occur because of

the presence of coordinates of the Sun and spacecraft in

P are neglected, but the explicit derivatives of P with

respect to the attitude control parameters (fl, f._, fa, al,

a2, Gr, Gv) and the solar radiation constant ,/are included
in Op. Now consider the various constants of interest

starting with the a.u. to km conversion factor A.

II. Mass of Venus

The variation of Eq. (D-l) with respect to any plane-

tary mass M'_ is simply the coefficient of that mass in the

formula. In particular, for Venus the variation is

_M* _ [h(r,.) -- h(rm,)]
C t'

(D-II)

I. Astronomical Unit (a.u.)

In Eq. (119), or better Eq. (D-l), the explicit deriva-

tive of A is obvious, but an implicit derivative also enters

through the solar and planetary coordinates by means of

Eq. (126) and (127).

_A -- 3_'-' a_ [h(re) -- h(r_e)]

+ 3k "2 A 2 _ M_ [h(rj) - h(rpj)]
j=l

_re _rve+ k "2 A 3 /(re) -_- -](r_) _A

s _rj _rpj-I
+ _ M_](rj)7_-- _j=,M_](rp_) _A J

(D-7)

where from Eq. (120) and (126)

_roe urq)

aA -- _a - re. (ephem) (D-8)

_rpj _ _rj
_A ?A - rot (ephem) --re. (ephem) (D-9)

Substituting Eq. (D-8) and (D-9) into (D-7) to obtain

the complete variation with respect to A.

/ d_r \ /

_--d__,)/_A = 3k "2 A 2_ h(re) -- h(rpe)

+ _ M_ [h(rj) - h(rv;)]
j=l

+ [](r,,e) -/(re)] Are_ (ephem)

+ k M; [J(rj) -/(rp_)]
j=l

X [Arej (ephem) - AroB (ephem)]
N

Y

(D-10)

III. Mass of the Moon

The constant selected for variation is the selenocentric

constant k_,, which requires, in addition to the explicit

derivative, an implicit variation through the scaling

R¢,_ defined by Eq. (17) and (18), and which occurs

through the lunar coordinates according to Eq. (121). It

should be noted that the variation in the ephemeris

coordinates r_ (ephem) because of a variation in k_ is
neglected just as the effect of the mass of Venus or the

ephemeris values of the planetary coordinates were

neglected in Eq. (D-11). However, the effect of small

variations in the masses on the lunar and planetary

ephemerides, which in turn affect the spacecraft coordi-

nates through the equations of motion, is a higher order
effect in comparison to the direct variations considered
here. Differences between the masses determined with

the Mariner II data and those used in the lunar and

planetary theories could produce noticeable changes to

the ephemerides, especially the lunar ephemeris, but

these changes would be so small as to have no significant
effect on the solution for the constants obtained in Sec-

tion V-D.

From Eq. (D-l) the partial derivative of the accelera-

tion with respect to k_., is

d"r _r_

= h(r¢) - h(r_) + k_m [](r 0 - ](r_)] k2

_re

+ k ''2 a _ [/(re) -/(r_)] _k=g,,

_rj
+ k '': A _ ;:, M '_.;[J(rj) - ](rpj)] _k_

(D-12)

From Eq. (121)

_r¢ _Rem
-- r_ (ephem)

_k_m _k_m
(D-iS)
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and from Eq. (127) and (128)

_r_ _ _ro _ /_

_k_,,, Dk_,,, 1 +

+
k_e

(G + k_m)-'
R_ r_ (ephem) (D-14)

where from Eq. (17) and (18)

_Rem 1 R ....

_k_,,, 3 G + G,
(D-'15)

Combine Eq. (D-14) and (D-15) to obtain

_ri _r® 1 3G + k_
R_m r_ (ephem) (k_ + k_., )_

(D-16)

Also, Eq. (D-13) and (D-15) yield

_r¢ 1 1

?k_,,, - 3 R,,,, r_ (ephem) k_e + k_,, (D-17)

Finally, substitute Eq. (D-16) and (D-17) into (D-13)

to obtain the required partial derivative with respect

to k_.

= h(r_) - h(r:)

+
1 /x

31+_
[/(r_) -/(r_)] R,, r_ (ephem)

1 k,,_A3 3k_e +k_ {+ -3 (k_e + k'_,,)'-' [J(r®) - ](rp_)]

• }+ _ M; [](r_) - ](r,,;)] Re., r< (ephem)
j=l

(D-18)

IV. Mass of Earth

The derivation of the partial derivative of the accelera-

tions with respect to k'-ge is very similar to that for k_m.

72

From Eq. (D-l) we have

_kzge_ (d2r)=_ h(r)+ k 2gin[/(re) -/(rl_)] 2k_e_r_

-Jr- k It2 A 3 { [](ro) -- ](r_)]

8ro+ _ M_ [/(rj)-/(r_j)] -_k_e

(D-19)

with

_r _ 1 R_,,, r< (ephem)., 1 (D-20)
_G 3 G + k_

and

_ro 2 k_
_" Re,,, r_ (ephem) (D-21)

The combination of Eq. (D-19), (D-20) and (D-21) is

= h(r) 4 1 _ [/(re) -- ](r¢)] Re.re (ephem)
81+/_

2 k_. _,,_A :'_[_(r_) - ](rv_)]
s (G + _)_ [

+ _ M_ [](r,)- ](r_)]}. Re. re (ephem)

(D-22)

V. Solar Radiation and Attitude-Control

Parameters

The parameters which can be estimated are f_, f_, f_,

Ctl, (_2, "F, Gr and Gs, and the required partial derivatives

of the spacecraft acceleration vector with respect to these

parameters are easily recognized as differential coeffi-

cients in the expression for the differential of P. Thus, all
that is needed is the expression for dP which is obtained

immediately from Eq. (184).

dP = a (r) (U®_,dr1 + T dto. + N df._)

K

+ ° (a.u.) (U_d3, + TdGr + NdGs)r5 v

-- r ffl U_ + [2 T + f_N)(d_l + r dct2) (D-2._)
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Vh Earth and Venus Ephemeris

The variations in the spacecraft acceleration with re-

spect to variations in the heliocentric coordinates of

the Earth-Moon barycenter ro_ (ephem) and Venus

r®,, (ephem) as they occur in the ephemerides can be

obtained immediately from Eq. (D-I) with the use of

Eq. (122) and (128). The differential of the acceleration

with respect to differentials in rob (ephem) and

ro,, (ephem) is

\ dt 2] = -- k ''2 A a J[/(ro) - J(r,®)]

+ _ M_ [/(r) - J(ri, j) ] }Ad rob (ephem)

+ k "2 A 3M,q [](r,.) - /(r_v)] a d re,. (ephem)

(D-24)

Actually, because the spacecraft approaches only Venus,

all terms of the summation in Eq. (D-2A) except Venus are

dropped from the evaluation of the coefficient of

A d roR (ephem) and Eq. (D-24) is approximated by

= _ z,2 {d \dt_ ] A 3 [/(ro) -/(r_)]

+ M_ [/(r_,) -/(rp,)]A d ro. (ephem)

+ k ''z A 3 M_ [/(r,.) -/(rp.)] A dro, (ephem)

(D-25)

It remains to express the differentials dro8 (ephem) and
dro,, (ephem) in terms of a set of orbital elements E for the

Earth and T for Venus. Four elements of the Earth's

orbit are selected for correction according to the ordering
as follows:

AE1 = ae' (eccentricity correction)

AE2 = _'I'1 (obliquity correction)

±E3 = 410 + _x,I,'a (mean longitude correction)

AE4 = e'anv" (longitude of perihelion correction)

The notation on the right-hand side of the definitions for

the elements of zXE is from Ref. 28, p. 245. The two ele-

ments left out of the total set of elements for the Earth

are the mean motion, which is accurately known, and the

correction to the equinox, which cannot be determined

from radio tracking data without observations against the

star background.

The elements of Venus are selected as the cartesian

components themselves at some arbitrary epoch because

it is the heliocentric position of the planet that must be

modified in order to achieve a satisfactory representation

of all the data. However, one of the velocity components

is eliminated and a constraint is applied to hold the mean

distance of the planet in astronomical units a constant.

This constaint is derived by linearizing the vis-viva

integral

_ov._o,,=k,,2(l+M_) (2,, _'1) (D-26)

Hold the mean distance a,, constant in Eq. (D-26) and
obtain

/'o_" M'ov + k"2(1 + M_a rev . aro_, = 0 (D-27)
v] r3 r

In practice, 3co,.is eliminated from the elements T and its

correction is computed from the other five elements by

rearranging Eq. (D-27) as

• 1

x_, a_r = - k"_0 + M_) _ (x_ ax_ + y_ ay_

+ zov azo,) -- Yo. ±yo_ -- ;_o_a_ (D-28)

where the corrections occur at the epoch of osculation
for the elements T.

The method for relating corrections ,XE and AT to aro8

and ±ro_,, respectively, is described in detail in Section II-B

of Ref. 2 and is not reproduced here. The differential

coefficients relating variations in the coordinates to varia-
tions in the orbital elements E and T are based on two-

body formulas which are quite satisfactory for corrections

to the planetary ephemeris over short intervals of time.
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Appendix E

Doppler Data and Residuals

The Doppler data used to obtain the solutions of Sec-

tion V-D are listed in Tables E-1 and E-2 along with

all other necessary information to completely specify the
data. Also the best set of residuals from Solutions III and

VII are listed in the fifth column, and in the sixth column

the linear residuals from Solution IX are given. The as-
sumed standard deviation on each observation is listed

in the fourth column. The inverse square of these numbers

represents the weight assigned to each observation in the

least-squares solutions.

Table E-1. Mariner II Doppler data (Station 12 transmitting, Station 11 receiving)

Transmitter Frequency = 29.6682 MHz

Pass -- Sept. 5, 1962

Observation Count

time (UT2C) time

h m s (sec)

01 16 26.0 50

01 26 26.0 50

01 36 26.0 50

01 46 26.0 50

01 56 26.0 50

02 06 26.0 50

02 24 26.0 50

02 34 26.0 50

02 44 26.0 50

02 54 26.0 50

03 04 26.0 50

03 16 26.0 50

03 26 26.0 50

03 36 26.0 50

03 47 26.0 50

03 57 26.0 50

04 07 26.0 50

04 17 26.0 50

04 27 26.0 50

04 37 26.0 50

04 48 26.0 50

04 59 26.0 50

05 09 26.0 50

05 20 26.0 50

05 30 26.0 50

05 40 26.0 50

05 50 26.0 50

Doppler Error Linear

data weight Residual residual

(Hz) (Hz) (Hz) (Hz)

0.0159 --0.0010 --0.0013

119750.659 0.0159 0.0029 0.0036

119852.420 0.0159 0.0000 0.0007

119952.819 0.0159 0.0225 0.0222

120051.600 0.0159 0.0088 0.0085

120148.619 0.0159 0.0068 0.0076

120318.180 0.0159 --0.0049 --0.0051

120409.239 0.0160 --0.0146 --0.0148

120497.859 0.0160 0.0010 0.0008

120583.819 0.0160 --0.0078 --0.0070

120667.000 0.0160 0.0068 0.0076

120762.880 0.0161 0.0117 0.0125

120839.319 0.0161 0.0078 0.0086

120912.460 0.0160 0.0000 0.0008

120988.960 0.0161 0.0117 0.0105

121054.739 0.0162 0.0137 0.0135

121116.779 0.0162 --0.0137 --0.0139

121175.039 0.0162 0.0098 0.0095

121229.319 0.0164 --0.0039 --0.0042

121279.579 0.0164 0.0078 0.0075

121330.060 0.0166 0.0039 0.0036

121375.420 0.0168 0.0088 0.0095

121412.100 0.0170 --0.0029 --0.0023

121447.359 0.0175 --0.0234 --0.0238

121474.760 0.0182 --0.0137 --0.0141

121497.640 0.0194 --0.0127 --0.0121

121515.979 0.0218 --0.0010 --0.0014

Transmitter Frequency = 29.6681 MHz

Pass m Sept. 5 and Sept. 6, 1962

19 27 26.0 50 116723.979

19 37 26.0 50 116754.180

19 47 26.0 50 116788.760

19 57 26.0 50 116827.720

20 07 26.0 50 116870.960

20 17 26.0 50 116918.399

20 27 26.0 50 116969.979

20 37 26.0 50 117025.539

20 47 26.0 50 117085.020

20 57 26.0 50 117148.300

21 07 26.0 50 117215.279

0.0177 --0.0176 --0.0167

0.0172 0.0186 0.0185

0.0169 0.0059 0.0058

0.0167 0.0107 0.0108

0.0165 0.0068 0.0079

0.0164 --0.0020 --0.0009

0.0163 0.0156 0.0167

0.0162 --0.0020 --0.0008

0.0162 --0.0078 --0.0066

0.0161 --0.0068 --0.0066

0.0161 0.0205 0.0218

Transmitter Frequency = 29.6682 MHz

Observation Count

time (UT2C) time

h m s (sec)

21 20 26.0 50

21 30 26.0 50

21 40 26.0 50

21 50 26.0 50

22 02 26.0 50

22 12 26.0 50

22 22 26.0 50

22 33 26.0 50

22 43 26.0 50

22 53 26.0 50

23 03 26.0 50

23 13 26.0 50

23 23 26.0 50

23 33 26.0 50

23 43 26.0 50

23 53 26.0 50

00 03 26.0 50

00 13 26.0 50

O0 23 26.0 50

O0 33 26.0 50

O0 44 26.0 50

O0 54 26.0 50

01 04 26.0 50

01 14 26.0 50

01 24 26.0 50

01 34 26.0 50

01 44 26.0 50

01 54 26.0 50

02 04 26.0 50

02 14 26.0 50

02 24 26.0 50

02 34 26.0 50

02 44 26.0 50

02 54 26.0 50

03 04 26.0 50

03 14 26.0 50

03 24 26.0 50

03 34 26.0 50

03 44 26.0 50

03 54 26.0 50

04 04 26.0 50

Doppler Error Linear

data weight Residual residual

(Hz) (Hz) (Hz) (Hz)

117307.619 0.0161 --0.0098 --0.0094

117382.520 0.0161 --0.0049 --0.0045

117460.640 0.0160 --0.0010 --0.0005

17541.840 0.0160 0.0137 0.0152

17643.060 0.0160 --0.0195 --0.0180

17730.460 0.0160 0.0039 0.0045

17820.380 0.0159 --0.0029 --0.0033

17922.060 0.0159 0.0215 0.0212

18016.720 0.0159 --0.0254 --0.0247

18113.460 0.0159 0.0137 0.0135

18211.939 0.0159 --0.0166 --0.0158

18312.079 0.0159 --0.0039 --0.0030

18413.619 0.0159 --0.0127 --0.0137

118516.399 0.0159 --0.0107 --0.0108

118620.220 0.0159 0.0039 0.0039

118724.840 0.0159 --0.0078 --0.0078

118830.119 0.0159 0.0127 0.0118

118935.800 0.0159 0.0146 0.0148

119041.680 0.0159 0.0000 --0.0008

119147.579 0.0159 --0.0059 --0.0066

119263.840 0.0159 --0.0107 --0.0115

119369.140 0.0159 0.0254 0.0247

119473.760 0.0159 0.0049 0.0042

119577.560 0.0159 --0.0117 --0.0114

119680.359 0.0159 --0.0010 --0.0026

119781.920 0.0159 --0.0059 --0.0065

119882.079 0.0159 0.0078 0.0082

119980.600 0.0159 0.0000 0.0015

120077.319 0.0159 --0.0049 --0.0054

120172.060 0.0159 0.0039 0.0034

120264.619 0.0159 0.0078 0.0064

120354.800 0.0160 --0.0137 --0.0151

120442.500 0.0160 0.0127 0.0123

120527.479 0.0160 0.0166 0.0162

120609.579 0.0160 0.0029 0.0025

120688.680 0.0161 0.0107 0.0103

120764.579 0.0161 --0.0098 --0.0101

120837.199 0.0161 0.0107 0.0094

120906.340 0.0161 0.0098 0.0094

120971.880 0.0162 0.0010 --0.0004

121033.720 0.0162 0.0117 0.0104
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Table E-1 (contd)

Observmion Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

21 03 26.0 50

21 13 26.0 50

21 23 26.0 50

21 33 26.0 50

21 43 26.0 50

21 53 26.0 50

22 03 26.0 50

22 15 26.0 50

22 25 26.0 50

22 35 26.0 50

22 45 26.0 50

22 55 26.0 50

23 05 26.0 50

23 15 26.0 50

23 25 26.0 50

23 35 26.0 50

23 47 26.0 50

23 57 26.0 50

00 07 26.0 50

00 19 26.0 50

O0 31 26.0 50

O0 41 26.0 50

04 14 26.0 50

04 24 26.0 50

04 34 26.0 50

04 44 26.0 50

04 54 26.0 50

05 04 26.0 50

05 14 26.0 50

05 24 26.0 50

05 34 26.0 50

05 44 26.0 50

05 54 26.0 50

117129.359

117199.840

117273.699

117350.840

117431.100

117514.340

117600.359

17707.060

17798.640

17892.479

17988.399

8086.220

8185.699

8286.720

8389.039

8492.479

8617.760

8722.920

8828.500

8955.619

9082.720

9188.380

21091.680

21145.739

121195.739

121241.579

121283.180

121320.460

121353.359

121381.819

121405.739

121425.159

121439.960

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0161 --0.0039 --0.0056

0.0161 0.0078 0.0071

0.0161 --0.0088 --0.0104

0.0161 --0.0107 --0.0123

0.0160 --0.0098 --0.0123

0.0160 0.0078 0.0063

0.0160 0.0049 0.0034

0.0160 0.0127 0.0112

0.0159 --0.0020 --0.0034

0.0159 --0.0098 --0.0112

0.0159 --0.0078 --0.0092

0.0159 0.0088 0.0075

0.0159 --0.0127 --0.0140

0.0159 0.0039 0.0026

0.0159 0.0098 0.0085

0.0159 0.0264 0.0242

0.0159 0.0127 0.0106

0.0159 0.0107 0.0086

0.0159 --0.0381 --0.0401

0.0159 0.0020 0.0009

0.0159 0.0010 0.0009

0.0159 --0.0156 --0.0176

0.0162 --0.0205 --0.0209

0.0164 --0.0029 --0.0043

0.0164 0.0078 0.0065

0.0165 0.0078 0.0075

0.0167 0.0059 0.0055

0.0170 0.0010 --0.0004

0.0174 0.0029 0.0016

0.0180 0.0137 0.0133

0.0190 --0.0117 --0.0131

0.0211 0.0039 0.0035

0.0258 --0.0322 --0.0326

Transmifler Frequency = 29.6682 MHz

Pass--Sept. 6 and Sept. 7, 1962

19 31 26.0 50 116662.180

19 41 26.0 50 116695.859

19 52 26.0 50 116737.939

20 03 26.0 50 116785.239

20 13 26.0 50 116832.640

20 23 26.0 50 116884.199

20 33 26.0 50 116939.739

20 43 26.0 50 116999.180

20 53 26.0 50 117062.439

O0 51 26.0 50 119293.640

01 05 26.0 50 119439.880

01 17 26.0 50 119563.739

01 27 26.0 50 119665.760

01 37 26.0 50 119766.420

01 47 26.0 50 119865.479

01 57 26.0 50 119962.840

02 07 26.0 50 120058.260

02 17 26.0 50 120151.539

02 27 26.0 50 120242.560

0.0173 --0.0010 --0.0029

0.0170 0.0049 0.0030

0.0167 --0.0107 --0.0116

0.0165 --0.0039 --0.0057

0.0164 --0.0176 --0.0194

0.0163 0.0117 0.0109

0.0162 0.0059 0.0041

0.0162 --0.0098 --0.0105

0.0161 0.0000 0.0017

0.0159 0.0010 --0.0009

0.0159 0.0195 0.0186

0.0159 --0.0371 --0.0380

0.0159 --0.0166 --0.0174

0.0159 0.0020 0.0002

0.0159 --0.0273 --0.0291

0.0159 --0.0117 --0.0125

0.0159 --0.0020 --0.0036

0.0159 --0.0176 --0.0192

0.0160 0.0059 0.0042

Observation Count Doppler

time (UT2C) time data

b m S (sac) (Hz)

02 37 26.0 50 120331.079

02 47 26.0 50 120416.960

02 57 26.0 50 120500.020

03 07 26.0 50 120580.159

03 19 26.0 50 120672.100

03 29 26.0 50 120745.140

03 39 26.0 50 120814.739

03 49 26.0 50 120880.760

03 59 26.0 50 120943.039

04 09 26.0 50 121001.539

04 19 26.0 50 121056.100

04 31 26.0 50 121116.199

04 41 26.0 50 121161.720

04 53 26.0 50 121210.760

05 03 26.0 50 121246.880

05 13 26.0 50 121278.520

05 13 26.0 50 121278.520

05 23 26.0 50 121305.760

05 33 26.0 50 121328.460

05 43 26.0 50 121346.600

05 53 26.0 50 121360.140

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0160 0.0010 --0.0006

0.0160 0.0020 0.0004

0.0160 --0.0098 --0.0103

0.0161 0.0293 0.0287

0.0161 --0.0117 --0.0132

0.0161 --0.0029 --0.0044

0.0161 0.0078 0.0063

0.0162 0.0156 0.0151

0.0162 --0.0127 --0.0141

0.0162 0.0029 0.0015

0.0163 0.0156 0.0152

0.0164 0.0010 --0.0004

0.0166 --0.0088 --0.0092

0.0168 0.0039 0.0035

0.0171 0.0342 0.0338

0.0175 --0.0088 --0.0101

0.0175 --0.0088 --0.0101

0.0182 0.0137 0.0123

0.0195 0.0107 0.0114

0.0219 0.0010 0.0006

0.0283 --0.0400 --0.0414

Transmitter Frequency = 29.6682 MHz

Pass -- Sept. 7 and Sept. 8, 1962

19 03 26.0

19 13 26.0

19 23 26.0

19 34 26.0

19 44 26.0

19 54 26.0

20 04 26.0

20 15 26.0

20 25 26.0

20 35 26.0

20 46 26.0

20 56 26.0

21 06 26.0

21 16 26.0

21 26 26.0

21 36 26.0

21 46 26.0

21 56 26.0

22 06 26.0

22 17 26.0

22 27 26.0

22 37 26.0

22 47 26.0

22 57 26.0

23 07 26.0

23 17 26.0

23 27 26.0

23 37 26.0

23 47 26.0

23 57 26.0

O0 07 26.0

50 16517.939

50 16540.840

50 16568.279

50 16603.600

50 16640.340

50 16681.399

50 16726.739

50 16781.399

50 16835.340

50 16893.260

50 16961.380

50 17027.220

50 117096.619

50 117169.500

50 117245.659

50 117325.000

50 117407.340

50 117492.579

50 117580.460

50 117680.039

50 117773.000

50 117868.159

50 117965.199

50 118064.079

50 118164.500

50 118266.340

50 118369.359

50 118473.359

50 118578.159

50 118683.560

50 118789.340

0.0193 0.0156 0.0148

0.0182 --0.0029 --0.0038

0.0175 0.0020 0.0011

0.0170 --0.0098 --0.0096

0.0168 --0.0088 --0.0096

0.0166 --0.0176 --0.0184

0.0164 0.0039 0.0041

0.0164 0.0107 0.0109

0.0162 0.0020 0.0021

0.0162 0.0195 0.0197

0.0162 0.0127 0.0129

0.0161 0.0186 0.0198

0.0161 0.0000 0.0003

0.0161 0.0117 0.0120

0.0161 --0.0088 --0.0075

0.0160 --0.0098 --0.0095

0.0160 --0.0225 --0.0212

0.0160 0.0127 0.0140

0.0160 0.0039 0.0043

0.0159 0.0029 0.0033

0.0159 --0.0117 --0.0103

0.0159 0.0293 0.0297

0.0159 --0.0127 --0.0122

0.0159 0.0117 0.0132

0.0159 --0.0059 --0.0044

0.0159 0.0078 0.0084

0.0159 0.0088 0.0094

0.0159 --0.0029 --0.0013

0.0159 --0.0068 --0.0052

0.0159 0.0010 0.0026

0.0159 0.0020 0.0036
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Observation Count Doppler

time (UT2C) time data

h m s (see) (Hz)

O0 17 26.0 50 118895.300

O0 27 26.0 50 119001.239

O0 37 26.0 50 119106.939

O0 47 26.0 50 119212.220

O0 57 26.0 50 119316.819

01 07 26.0 50 119420.640

01 18 26.0 50 119533.619

01 28 26.0 50 119635.000

01 38 26.0 50 119734.939

01 48 26.0 50 119833.199

01 58 26.0 50 119929.659

02 08 26.0 50 120024.079

02 18 26.0 50 120116.300

02 28 26.0 50 120206.140

02 38 26.0 50 120293.420

03 03 26.0 50 120499.340

03 13 26.0 50 120576.357

03 23 26.0 50 120650.140

03 33 26.0 50 120720.479

03 43 26.0 50 120787.300

03 53 26.0 50 120850.439

04 03 26.0 50 120909.760

04 13 26.0 50 120965.159

04 23 26.0 50 121016.619

04 33 26.0 50 121063.880

04 43 26.0 50 121106.920

04 53 26.0 50 121145.720

05 03 26.0 50 121180.079

05 13 26.0 50 121210.079

05 23 26.0 50 121235.619

05 33 26.0 50 121256.539

05 43 26.0 50 121272.960

05 53 26.0 50 121284.779

Transmitter Frequency = 29.6682 MHz

Pass _ Sept. 8 and Sept. 9, 1962

19 02 26.0 50

19 12 26.0 50

19 22 26.0 50

19 32 26.0 50

19 42 26.0 50

19 52 26.0 50

20 02 26.0 50

20 12 26.0 50

20 22 26.0 50

20 32 26.0 50

20 42 26.0 50

20 52 26.0 50

21 02 26.0 50

21 12 26.0 50

21 22 26.0 50

21 32 26.0 50

21 42 26.0 50

21 52 26.0 50

22 02 26.0 50

22 12 26.0 50

116446.720

116471.060

116499.840

116533.079

116570.720

116612.680

116658.880

116709.199

16763.560

16821.880

16884.000

16949.920

17019.340

17092.239

17176.239

i17247.819

117330.199

117415.420

117503.319

117593.760

76

Table E-1 (contd)

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

Observation Count Doppler

time (UT2C) time data

h m s (see) (Hz)

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0159 0.0029 0.0046

0.0159 0.0078 0.0086

0.0159 0.0020 0.0027

0.0159 0.0098 0.0106

0.0159 --0.0273 --0.0264

0.0159 --0.0039 --0.0030

0.0159 0.0068 0.0078

0.0159 0.0029 0.0039

0.0159 0.0107 0.0117

0.0159 --0.0137 --0.0127

0.0159 --0.0010 --0.0001

0.0159 --0.0049 --0.0048

0.0159 --0.0039 --0.0038

0.0160 0.0000 0.0011

0.0160 0.0010 0.0022

0.0161 0.0029 0.0022

0.0161 --0.0176 --0.0173

0.0161 --0.0049 --0.0055

0.0161 --0.0205 --0.0201

00161 --0.0068 --0.0064

0.0162 0.0029 0.0033

0.0162 --0.0068 --0.0064

0.0163 --0.0244 --0.0249

0.0164 0.0381 0.0376

0.0165 0.0186 0.0191

0.0167 --0.0117 --0.0112

0.0169 0.0098 0.0093

0.0172 --0.0449 --0.0443

0.0178 --0.0273 --0.0267

0.0186 0.0176 0.0182

0.0202 --0.0264 --0.0267

0.0236 --0.0078 --0.0072

0.0336 --0.0234 --0.0228

0.0189 --0.0010 0.0003

0.0179 0.0332 0.0353

0.0173 0.0078 0.0100

0.0170 --0.0068 --0.0047

0.0167 --0.0049 --0.0027

0.0165 0.0039 0.0061

0.0164 0.0186 0.0207

0.0164 0.0098 0.0110

0.0162 --0.0068 --0.0047

0.0162 --0.0059 --0.0037

0.0162 --0.0361 --0.0340

0.0161 0.0215 0.0237

0.0161 --0.0039 --0.0027

0.0161 0.0010 --0.0012

0.0161 --0.0264 --0.0242

0.0160 0.0039 0.0061

0.0160 0.0049 0.0061

0.0160 --0.0059 --0.0036

0.0160 --0.0234 --0.0212

0.0159 --0.0166 --0.0153

22 22 26.0

22 32 26.0

22 42 26.0

22 52 26.0

23 02 26.0

23 12 26.0

23 22 26.0

23 33 26.0

23 43 26.0

23 53 26.0

O0 03 26.0

O0 13 26.0

O0 23 26.0

O0 33 26.0

O0 43 26.0

O0 53 26.0

01 03 26.0

01 13 26.0

01 23 26.0

01 33 26.0

01 43 26.0

01 53 26.0

02 03 26.0

02 13 26.0

02 23 26.0

02 33 26.0

02 43 26.0

02 53 26.0

03 03 26.0

03 13 26.0

03 23 26.0

03 33 26.0

03 43 26.0

03 53 26.0

04 03 26.0

04 13 26.0

04 23 26.0

04 33 26.0

04 43 26.0

04 53 26.0

05 03 26.0

05 13 26.0

05 23 26.0

05 34 26.0

05 44 26.0

50 117686.539

50 117781.479

50 117878.399

50 17977.119

50 18077.420

50 18179.180

50 18282.100

50 18396.479

50 18501.340

50 18606.720

50 118712.560

50 118818.560

50 118924.500

50 119030.239

50 119135.560

50 119240.220

50 119344.039

50 119446.840

50 119548.380

50 119648.520

50 119747.000

50 119843.680

50 119938.380

50 120030.840

50 120120.939

50 120208.520

50 120293.420

50 120375.439

50 120454.399

50 120530.199

50 120602.659

50 120671.659

50 120737.060

50 120798.720

50 120856.539

50 120910.399

50 120960.220

50 121005.880

50 121047.300

50 121084.399

50 121117.100

50 121145.319

50 121169.039

50 121189.920

50 121204.060

0.0159 --0.0146 --0.0124

0.0159 --0.0137 --0.0114

0.0159 --0.0137 --0.0113

0.0159 --0.0068 --0.0055

0.0159 --0.0215 --0.0201

0.0159 0.0146 0.0161

0.0020 --0.0020 0.0005

0.0159 --0.0137 --0.0112

0.0159 0.0156 0.0181

0.0159 --0.0254 --0.0229

0.0159 0.0059 0.0084

0.0159 0.0186 0.0211

0.0159 --0.0049 --0.0033

0.0159 --0.0020 --0.0003

0.0159 0.0146 0.0153

0.0159 0.0059 0.0076

0.0159 --0.0049 --0.0032

0.0159 0.0049 0.0057

0.0159 --0.0088 --0.0070

0.0159 0.0107 0.0126

0.0159 --0.0029 --0.0011

0.0159 0.0010 0.0019

0.0159 0.0283 0.0293

0.0159 0.0020 0.0029

0.0160 --0.0205 --0.0195

0.0160 --0.0234 --0.0214

0.0160 0.0010 0.0030

0.0160 0.0166 0.0187

0.0161 0.0029 0.0041

0.0161 0.0098 0.0119

0.0161 0.0049 0.0061

0.0161 0.0068 0.0091

0.0162 0.0107 0.0120

0.0162 --0.0010 0.0013

0.0162 --0.0078 --0.0055

0.0164 --0.0176 --0.0162

0.0164 --0.0078 --0.0064

0.0166 --0.0029 --0.0015

0.0168 0.0049 0.0064

0.0170 0.0137 0.0152

0.0174 0.0166 0.0182

0.0180 --0.0068 --0.0052

0.0191 --0.0244 --0.0228

0.0215 --0.0010 --0.0003

0.0270 --0.0264 --0.0247

Transmitter Frequency = 29.6681 MHz

Pass m Sept. 14 and Sept. 15, 1962

18 39 26.0 50 116114.079

18 49 26.0 50 116139.659

18 59 26.0 50 116169.779

19 09 26.0 50 116204.300

19 19 26.0 50 116243.199

19 29 26.0 50 116286.399

19 39 26.0 50 116333.800

0.0186 0.0117 0.0108

0.0177 --0.0098 --0.0097

0.0172 0.0166 0.0157

0.0169 0.0059 0.0059

0.0167 0.0029 0.0029

0.0165 0.0029 0.0029

0.0164 --0.0127 --0.0118
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Table E-1 (contd)

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

19 49 26.0 50

19 59 26.0 50

20 09 26.0 50

20 19 26.0 50

20 29 26.0 50

20 39 26.0 50

20 49 26.0 50

20 59 26.0 50

21 09 26.0 50

21 19 26.0 50

21 29 26.0 50

21 39 26.0 50

21 50 26.0 50

22 O0 26.0 50

22 10 26.0 50

22 20 26.0 50

22 30 26.0 50

22 41 26.0 50

22 51 26.0 50

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

16385.340 0.0163 --0.0117 --0.0128

16440.920 0.0162 0.0020 0.0018

16500.460 0.0162 0.0557 0.0565

16563.699 0.0161 0.0049 0.0037

16630.659 0.0161 --0.0107 --0.0110

16701.180 0.0161 --0.0205 --0.0218

16775.159 0.0161 0.0078 0.0075

16852.380 0.0161 0.0010 --0.0003

16932.760 0.0160 0.0215 0.0212

17016.060 0.0160 --0.0117 --0.0121

17102.239 0.0160 0.0195 0.0182

17191.020 0.0160 0.0010 0.0006

17291.560 0.0159 0.0068 0.0065

17385.340 0.0159 --0.0137 --0.0141

17481.260 0.0159 0.0000 0.0000

17579.079 0.0159 --0.0059 --0.0062

17678.640 0.0159 --0.0039 --0.0043

17789.920 0.0159 --0.0098 --0.0101

17892.479 0.0159 --0.0195 --0.0189

Transmitter Frequency = 29.6682 MHz

23 01 26.0 50

23 11 26.0 50

23 21 26.0 50

23 31 26.0 50

23 42 26.0 50

23 52 26.0 50

O0 02 26.0 50

O0 12 26.0 50

O0 22 26.0 50

O0 32 26.0 50

O0 42 26.0 50

O0 52 26.0 50

01 02 26.0 50

01 12 26.0 50

01 22 26.0 50

01 32 26.0 50

01 42 26.0 50

01 52 26.0 50

02 02 26.0 50

02 12 26.0 50

02 22 26.0 50

02 32 26.0 50

02 42 26.0 50

02 52 26.0 50

03 02 26.0 50

03 12 26.0 50

03 22 26.0 50

03 32 26.0 50

03 42 26.0 50

03 52 26.0 50

04 02 26.0 50

04 12 26.0 50

04 22 26.0 50

04 32 26.0 50

04 42 26.0 50

17996.239 0.0159 --0.0186 --0.0189

18100.880 0.0159 --0.0049 --0.0062

18206.239 0.0159 --0.0020 --0.0023

18312.140 0.0159 0.0176 0.0173

18428.979 0.0159 0.0244 0.0241

18535.260 0.0159 --0.0156 --0.0159

18641.500 0.0159 0.0117 0.0115

18747.380 0.0159 --0.0088 --0.0090

18852.760 0.0159 --0.0117 --0.0109

18957.420 0.0159 --0.0156 --0.0158

19061.180 0.0159 0.0020 0.0018

19163.800 0.0159 --0.0010 --0.0021

19265.079 0.0159 --0.0264 --0.0264

119364.899 0.0159 0.0020 0.0029

119463.000 0.0159 0.0166 0.0166

119559.180 0.0159 0.0029 0.0030

119653.319 0.0159 0.0273 0.0274

119745.159 0.0160 0.0117 0.0119

119834.579 0.0160 0.0127 0.0129

119921.359 0.0160 --0.0176 --0.0173

120005.420 0.0160 0.0078 0.0071

120086.500 0.0160 --0.0117 --0.0114

120164.539 0.0161 0.0205 0.0209

120239.279 0.0161 --0.0049 --0.0045

120310.680 0.0161 0.0166 0.0171

120378.539 0.0161 0.0195 0.0201

120442.739 0.0162 0.0156 0.0162

120503.140 0.0162 --0.0117 --0.0111

120559.699 0.0163 0.0117 0.0124

120612.220 0.0164 --0.0039 --0.0031

120660.640 0.0165 --0.0195 --0.0177

120704.899 0.0167 --0.0020 --0.0001

120744.880 0.0168 0.0156 0.0166

120780.460 0.0172 --0.0156 --0.0146

120811.659 0.0176 --0.0049 --0.0038

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

04 52 26.0 50 120838.359

05 02 26.0 50 120860.539

05 12 26.0 50 120878.159

Error Linear

weight Residual residual

{Hz) (Hz) (Hz)

0.0184 --0.0156 --0.0135

0.0197 --0.0186 --0.0164

0.0225 --0.0186 --0.0183

Transmitter Frequency = 29.6682 MHz

Pass -- Sept. 22 and Sept. 23, 1962

18 13 26.0

18 26 32.0

18 39 02.0

18 49 02.0

19 07 32.0

19 20 02.0

20 14 02.0

21 43 02.0

21 53 02.0

22 08 02.0

22 18 02.0

22 30 32.0

22 41 02.0

22 54 02.0

23 07 02.0

23 17 02.0

23 27 02.0

23 37 02.0

02 30 32.0

02 47 02.0

03 11 02.0

03 21 02.0

03 42 02.0

04 O0 02.0

04 12 02.0

04 22 02.0

04 42 02.0

50 116082.739

180 116123.655

600 116169.941

600 116211.701

420 16300.021

600 16367.793

600 16728.251

600 17517.491

600 7617.201

600 7769.638

600 7872.901

180 8003.428

480 8114.125

600 8252.069

600 8390.585

600 8497.251

600 8603.805

600 8710.003

420 120300.466

600 120408.359

600 120546.873

600 120597.784

600 120691.086

240 120756.096

600 120791.161

600 120815.569

120 120850.883

0.0177 0.0078 0.0076

0.0171 --0.0039 --0.0042

0.0167 0.0078 0.0085

0.0165 0.0039 0.0045

0.0164 0.0029 0.0025

0.0162 0.0049 0.0053

0.0161 0.0010 0.0003

0.0159 0.0078 0.0079

0.0159 0.0029 0.0020

0.0159 --0.0029 --0.0028

0.0159 0.0029 0.0030

0.0159 0.0049 0.0050

0.0159 0.0039 0.0040

0.0159 0.0059 0.0069

0.0159 0.0049 0.0060

0.0159 0.0059 0.0050

0.0159 0.0186 0.0177

0.0159 0.0049 0.0050

0.0161 0.0107 0.0116

0.0162 0.0068 0.0068

0.0163 0.0049 0.0049

0.0164 0.0039 0.0040

0.0167 --0.0029 --0.0017

0.0173 0.9186 0.0189

0.9179 --0.0010 --0.0004

0.0190 --0.0010 --0.0005

0.0255 --0.0098 --0.0092

Transmitter Frequency = 29.6681 MHz

Pass--Sept. 23 and Sept. 24, 1962

18 O0 26.0

18 10 26.0

18 20 26.0

18 30 26.0

18 40 26.0

18 50 26.0

19 01 26.0

19 11 26.0

19 21 26.0

19 31 26.0

19 41 26.0

19 51 26.0

20 01 26.0

20 11 26.0

20 21 26.0

20 31 26.0

20 41 26.0

20 51 26.0

50 16078.600

50 16105.420

50 16136.819

50 16172.560

50 16212.720

50 16257.159

50 16310.840

50 16364.000

50 16421.079

50 16482.100

50 16546.920

50 16615.380

50 16687.319

50 16762.640

50 16841.199

50 116922.840

50 117007.460

50 117094.760

0.0183 0.0049 0.0029

0.0176 --0.0371 --0.0382

0.0172 0.0156 0.0145

0.0168 --0.0186 --0.0197

0.0166 0.0068 0.0056

0.0165 0.0273 0.0261

0.0164 --0.0010 --0.0023

0.0163 0.0273 0.0250

0.0162 0.0234 --0.0248

0.0162 --0.0205 --0.0219

0.0161 0.0107 0.0103

0.0161 0.0342 0.0327

0.0161 0.0195 0.0180

0.0161 0.0059 0.0053

0.0160 --0.0039 --0.0045

0.0160 --0.0176 --0.0182

0.0160 0.0195 0.0179

0.0160 --0.0322 --0.0329
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TableE-1 (contd)

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

21 01 26.0 50 117184.739

21 11 26.0 50 117277.119

21 21 26.0 50 117371.739

21 31 26.0 50 117468.439

21 41 26.0 50 117567.020

21 51 26.0 50 117667.319

22 01 26.0 50 117769.100

22 12 26.0 50 117882.539

22 22 26.0 50 117986.859

22 32 26.0 50 118092.039

22 42 26.0 50 118197.920

22 52 26.0 50 118304.300

23 02 26.0 50 118410.920

23 12 26.0 50 118517.640

23 22 26.0 50 118624.260

23 32 26.0 50 118730.520

23 42 26.0 50 118836.239

23 52 26.0 50 118941.239

O0 03 26.0 50 119055.640

O0 13 26.0 50 119158.439

O0 24 26.0 50 119269.920

O0 34 26.0 50 119369.659

O0 44 26.0 50 119467.619

O0 54 26.0 50 119563.619

01 04 26.0 50 119657.500

01 14 26.0 50 119749.060

01 24 26.0 50 119838.140

01 34 26.0 50 119924.539

01 44 26.0 50 120008.159

01 54 26.0 50 120088.760

02 05 26.0 50 120173.800

02 15 26.0 50 120247.680

02 25 26.0 50 120318.100

02 35 26.0 50 120384.920

02 45 26.0 50 120448.020

02 55 26.0 50 120507.359

03 05 26.0 50 120562.760

03 15 26.0 50 120614.060

03 25 26.0 50 120661.279

03 35 26.0 50 120704.220

03 45 26.0 50 120742.880

03 55 26.0 50 120777.159

04 05 26.0 50 120806.979

04 15 26.0 50 120832.279

04 25 26.0 50 120853.060

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0159 --0.0029 --0.0036

0.0159 --0.0010 --0.0027

0.0159 --0.0107 --0.0115

0.0159 --0.0088 --0.0095

0.0159 --0.0107 --0.0115

0.0159 0.0107 0.0100

0.0159 0.0098 0.0090

0.0159 --0.0137 --0.0144

0.0159 0.0078 0.0070

0.0159 --0.0029 --0.0037

0.0159 --0.0020 --0.0017

0.0159 0.0137 0.0139

0.0159 --0.0127 --0.0134

0.0159 --0.0176 --0.0173

0.0159 0.0059 0.0051

0.0159 0.0000 --0.0007

0.0159 --0.0107 --0.0104

0.0159 --0.0029 --0.0036

0.0159 --0.0039 --0.0036

0.0159 0.0068 0.0072

0.0159 --0.0068 --0.0074

0.0159 0.0146 0.0141

0.0159 0.0166 0.0171

0.0159 0.0068 0.0073

0.0159 0.0098 0.0103

0.0160 0.0049 0.0055

0.0160 0.0059 0.0065

0.0160 --0.0156 --0.0150

0.0160 0.0068 0.0075

0.0161 --0.0068 --0.0061

0.0161 --0.0137 --0.0129

0.0161 0.0107 0.0116

0.0161 0.0166 0.0175

0.0161 --0.0020 --0.0010

0.0162 --0.0381 --0.0380

0.0162 --0.0107 --0.0097

0.0163 0.0146 0.0158

0.0164 --0.0186 --0.0174

0.0165 0.0088 0.0090

0.0167 --0.0146 --0.0134

0.0169 --0.0059 --0.0055

0.0173 0.0039 0.0053

0.0178 0.0039 0.0054

0.0187 --0.0146 --0.0141

0.0204 --0.0068 --0.0053

Transmifler Frequency = 29.6681MHz

Pass_Sept. 29 and Sept. 30,1962

17 23 26.0 50 116351.039

17 40 02.0 600 116393.029

17 54 02.0 600 116437.918

18 08 02.0 600 116491.471

18 22 02.0 600 116553.448

18 38 02.0 480 116634.295

18 50 02.0 600 116701.841

0.0192 0.0029 0.0021

0.0176 --0.0020 --0.0028

0.0170 --0.0049 --0.0068

0.0167 0.0068 0.0068

0.0165 --0.0078 --0.0079

0.0163 --0.0029 --0.0031

0.0162 --0.0098 --0.0100

Observation Count

time (UT2C) time

h m s (sec)

19 11 02.0 600

19 21 02.0 600

19 37 02.0 600

19 47 02.0 600

20 07 02.0 600

20 17 02.0 600

20 36 02.0 600

20 53 32.0 300

21 06 02.0 600

21 16 02.0 600

21 38 02.0 600

21 48 02.0 600

22 07 02.0 600

22 19 02.0 600

22 38 02.0 600

22 48 02.0 600

23 08 02.0 600

23 18 02.0 600

23 42 02.0 600

23 52 02.0 600

O0 17 02.0 600

O0 40 02.0 600

O0 50 02.0 600

01 13 02.0 600

01 23 02.0 600

01 38 02.0 600

01 48 02.0 600

02 08 02.0 600

O2 18 02.0 60O

02 28 02.0 600

02 38 02.0 600

02 56 02.0 600

03 14 02.0 600

03 24 02.0 600

03 41 32.0 420

03 53 02.0 600

Doppler

data

(Hz)

116833.409

116901.807

117018.541

17095.852

17259.812

17346.161

17517.489

17682.819

17804.913

17904.590

118129.345

118233.546

118434.123

118562.031

118765.505

18872.659

19086.107

19191.989

19442.321

19544.564

19793.161

20011.024

20101.921

120300.977

120382.778

120499.611

120573.380

120710.378

120773.356

120832.498

120887.678

120976.704

121052.048

121087.812

121139.790

121166.250

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0161 --0.0010 --0.0003

0.0161 --0.0010 --0.0023

0.0161 --0.0068 --0.0072

0.0161 --0.0039 --0.0043

0.0160 --0.0098 --0.0092

0.0160 --0.0059 --0.0053

0.0159 --0.0078 --0.0073

0.0159 0.0059 0.0053

0.0159 0.0059 0.0063

0.0159 --0.0010 --0.0006

0.0159 --0.0029 --0.0025

0.0159 --0.0049 --0.0045

0.0159 0.0000 0.0014

0.0159 --0.0010 0.0004

0.0159 --0.0039 0.0025

0.0159 --0.0059 --0.0045

0.0159 --0.0029 --0.0015

0.0159 0.0000 0.0005

0.0159 --0.0059 --0.0054

0.0159 --0.0020 --0.0005

0.0159 --0.0020 --0.0014

0.0159 --0.0020 --0.0003

0.0160 --0.0059 --0.0052

0.0160 --0.0020 --0.0012

0.0160 0.0000 0.0018

0.0161 --0.0029 --0.0021

0.0161 0.0000 0.0009

0.0162 --0.0078 --0.0058

0.0162 --0.0098 --0.0077

0.0162 --0.0049 --0.0028

0.0164 --0.0059 --0.0037

0.0165 --0.0088 --0.0076

0.0168 --0.0020 --0.0003

0.0172 --0.0029 --0.0006

0.0182 --0.0049 --0.0025

0.0197 --0.0098 --0.0083

Transmitter Frequency = 29.6681 MHz

Pass m Oct. 6 and Oct. 7, 1962

17 36 02.0 600 117553.937

17 46 02.0 600 117600.010

20 28 32.0 300 118852.526

21 01 02.0 240 119184.782

21 13 02.0 600 119311.107

21 23 02.0 600 119417.442

21 33 02.0 600 119524.564

21 43 02.0 600 119632.270

22 04 02.0 600 119859.416

22 14 02.0 600 119967.616

22 24 02.0 600 120075.562

22 34 02.0 600 120183.039

22 44 02.0 600 120289.856

23 07 32.0 180 120537.160

23 18 32.0 60 120650.517

23 36 02.0 360 120746.933

0.0166 0.0127 0.0122

0.0165 0.0146 0.0141

0.0159 0.0020 --0.0009

0.0159 0.0059 0.0059

0.0159 --0.0029 --0.0029

0.0159 --0.0068 --0.0058

0.0159 --0.0059 --0.0049

0.0159 --0.0010 --0.0010

0.0159 --0.0059 --0.0049

0.0159 --0.0068 --0.0058

0.0159 --0.0020 --0.0019

0.0159 --0.0059 --0.0048

0.0159 --0.0039 --0.0029

0.0159 0.0039 0.0059

0.0159 --0.0078 --0.0067

0.0159 0.0010 0.0021
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Table E-1 (contd)

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

23 52 32.0 60

O0 06 32.0 60

O0 23 32.0 180

O0 35 02.0 600

O0 47 32.0 540

01 04 02.0 240

01 18 02.0 600

01 28 02.0 600

01 38 02.0 600

02 07 02.0 600

02 17 02.0 6O0

02 27 02.0 600

02 42 02.0 600

03 03 32.0 420

03 16 32.0 420

120915.410

121059.229

121188.719

121373.340

121477.300

121607.100

121709.923

121779.208

121844.826

22013.244

22063.430

22109.416

22170.335

22240.442

22272.676

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0159 --0.0059 --0.0047

0.0160 --0.0010 0.0002

0.0160 --0.0020 --0.0007

0.0160 0.0029 0.0042

0.0160 0.0049 0.0062

0.0161 0.0010 0.0023

0.0161 0.0117 0.0131

0.0161 0.0068 0.0083

0.0162 0.0078 0.0083

0.0164 0.0068 0.0094

0.0165 0.0029 0.0055

0.0167 0.0020 0.0036

0.0170 0.0010 0.0017

0.0180 --0.0059 --0.0050

0.0196 --0.0078 --0.0060

Transmitter Frequency = 29.6681 MHz

Pass -- Oct. 14 and Oct. 15, 1962

16 25 26.0 50 120280.760

16 35 26.0 50 120316.699

16 45 26.0 50 120357.060

16 55 26.0 50 120401.779

17 05 26.0 50 120450.760

17 16 26.0 50 120509.439

17 26 26.0 50 120567.079

17 36 26.0 50 120628.640

17 46 26.0 50 120694.140

17 56 26.0 50 120763.359

18 06 26.0 50 120836.159

18 18 26.0 50 120928.119

18 28 26.0 50 121008.420

18 38 26.0 50 121091.899

18 48 26.0 50 121178.359

18 58 26.0 50 121267.680

19 08 26.0 50 121359.699

19 18 26.0 50 121454.220

19 28 26.0 50 121551.060

19 38 26.0 50 121650.100

19 48 26.0 50 121751.100

19 58 26.0 50 121853.920

20 08 26.0 50 121958.319

20 18 26.0 50 122064.119

20 39 26.0 50 122290.000

20 49 26.0 50 122398.920

20 59 26.0 50 122508.460

21 09 26.0 50 122618.300

21 19 26.0 50 122728.300

21 29 26.0 50 122838.399

21 39 26.0 50 122948.180

21 49 26.0 50 123057.560

21 59 26.0 50 123166.300

22 09 26.0 50 123274.199

22 19 26.0 50 123381.020

22 29 26.0 50 123486.640

22 39 26.0 50 123590.819

22 49 26.0 50 123693.359

0.0174 0.0049 0.0052

0.0170 0.0000 --0.0007

0.0167 0.0010 0.0002

0.0165 0.0156 0.0148

0.0164 0.0234 0.0236

0.0164 0.0117 0.0109

0.0162 0.0127 0.0128

0.0162 --0.0352 --0.0360

0.0162 --0.0029 --0.0038

0.0161 0.0078 0.0079

0.0161 --0.0137 --0.0136

0.0161 --0.0215 --0.0215

0.0161 --0.0156 --0.0147

0.0160 0.0059 0.0058

0.0160 --0.0049 --0.0039

0.0160 --0.0049 --0.0049

0.0160 0.0059 0.0068

0.0159 0.0010 0.0019

0.0159 --0.0244 --0.0254

0.0159 --0.0146 --0.0138

0.0159 --0.0225 --0.0216

0.0159 --0.0010 --0.0001

0.0159 --0.0010 --0.0011

0.0159 --0.0078 --0.0070

0.0159 --0.0215 --0.0216

0.0159 --0.0098 --0.0089

0.0159 0.0352 0.0360

0.0159 --0.0039 --0.0031

0.0159 --0.0615 --0.0597

0.0159 0.0059 0.0057

0.0159 --0.0156 --0.0148

0.0159 --0.0039 --0.0021

0.0159 0.0078 0.0077

0.0159 0.0186 0.0194

0.0159 --0.0098 --0.0089

0.0159 0.0010 0.0019

0.0159 0.0078 0,0068

0.0159 0.0049 0.0058

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

22 59 26.0 50 123794.100

23 09 26.0 50 123892.800

23 19 26.0 50 123989.319

23 29 26.0 50 124083.500

23 39 26.0 50 124175.100

23 49 26.0 50 124264.020

23 59 26.0 50 124350.039

O0 09 26.0 50 124433.060

O0 19 26.0 50 124512.880

O0 29 26.0 50 124589.380

O0 39 26.0 50 124662.359

O0 49 26.0 50 124731.739

O0 59 26.0 50 124797.420

01 31 26.0 50 124981.119

01 41 26.0 50 125029.920

01 51 26.0 50 125074.420

02 01 26.0 50 125114.600

02 11 26.0 50 125150.319

02 21 26.0 50 125181.579

02 31 26.0 50 125208.319

02 41 26.0 50 125230.500

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0159 0.0205 0.0224

0.0159 0.0029 0.0049

0.0159 --0.0068 --0.0068

0.0160 0.0127 0.0147

0.0160 --0.0068 --0.0048

0.0160 0.0059 0.0069

0.0160 --0.0078 --0.0058

0.0161 0.0127 0.0148

0.0161 0.0205 0.0226

0.0161 0.0410 0.0422

0.0161 0.0127 0.0139

0.0162 --0.0088 --0.0076

0.0162 0.0039 0.0051

0.0165 --0.0137 --0.0124

0.0166 0.0098 0.0111

0.0168 0.0000 0.0014

0.0171 0.0166 0.0180

0.0175 --0.0088 --0.0074

0.0182 --0.0186 --0.0171

0.0193 --0.0205 --0.0190

0.0217 --0.0156 --0.0141

Transmitter Frequency = 29.6681 MHz

Pass -- Oct. 24 and Oct. 25, 1962

15 25 02.0 120 126608.675

15 42 32.0 420 126674.135

16 01 32.0 420 126760.366

16 19 02,0 600 126853.448

16 29 32.0 60 126915.116

16 56 02.0 600 127090.659

17 12 32.0 180 127212.905

17 23 02.0 600 127295.857

17 33 02.0 600 127378.128

17 43 02.0 600 127463.569

18 05 02.0 600 127661.920

18 25 02.0 600 127853.421

18 35 02.0 600 127952.716

19 01 02.0 600 128220.411

19 15 02.0 600 128369.357

19 35 32.0 60 128592.133

19 52 02.0 600 128774.526

20 13 02.0 600 129008.986

20 23 02.0 600 129121.069

20 45 02.0 360 129367.369

21 01 02.0 600 129545.236

21 11 02.0 600 129655.458

21 21 02.0 600 129764.706

21 31 02.0 600 129872.776

21 47 02.0 600 130042.760

22 O0 02.0 600 130177.739

22 10 02.0 600 130279.380

22 20 02.0 600 130378.904

22 30 02.0 600 130476.149

22 40 02.0 600 130570.930

22 55 02.0 240 130708.191

0.0178 0.0322 0.0322

0.0170 0.0156 0.0146

0.0166 0.0186 0.0174

0.0164 0.0010 0.0008

0.0163 --0.0215 --0.0217

0.0161 --0.0049 --0.0061

0.0161 --0.0039 --0.0042

0.0161 --0.0010 --0.0012

0.0161 --0.0039 --0.0042

0.0160 --0.0010 --0.0022

0.0160 0.0049 0.0046

0.0159 0.0000 --0.0003

0.0159 --0.0088 --0.0091

0.0159 --0.0039 --0.0053

0.0159 --0.0088 --0.0092

0.0159 0.0010 0.0016

0.0159 --0.0010 --0.0014

0.0159 --0.0010 --0.0014

0.0159 0.0010 0.0006

0.0159 --0.0029 --0.0014

0.0159 --0.0020 --0.0024

0.0159 --0.0010 --0.0014

0.0159 0.0010 0.0006

0.0159 --0.0010 --0.0004

0.0159 0.0000 0.0006

0.0159 --0.0010 --0.0014

0.0159 0.0010 0.0006

0.0159 --0.0029 --0.0033

0.0160 0.0029 0.0036

0.0160 0.0107 0.0104

0.0160 0.0088 0.0094
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Table E-1 (contd)

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

23 06 02.0 600 130804.581

23 16 02.0 600 130889.098

23 26 02.0 600 130970.399

23 47 02.0 600 131130.057

23 57 02.0 600 131200.514

O0 07 02.0 600 130267.215

O0 20 02.0 360 131348.207

O0 39 02.0 600 131454.039

O0 49 02.0 600 131503.746

01 03 32.0 540 131568.219

0t 14 02.0 600 131609.080

01 35 02.0 600 131676.072

01 45 02.0 600 131700.928

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0160 0.0088 0.0085

0.0161 0.0177 0.0104

0.0161 0.0088 0.0085

0.0161 0.0117 0.0115

0.0162 0.0059 0.0056

0.0162 0.0078 0.0076

0.0163 0.0020 0.0017

0.0165 0.0000 --0.0002

0.0167 0.0039 0.0037

0.0170 0.0059 0.0057

0.0175 --0.0020 --0.0021

0.0195 --0.0039 --0.0040

0.0219 --0.0098 --0.0098

Transmitter Frequency = 29.6681 MHz

Pass _ Oct. 27 and Oct. 28, 1962

15 41 02.0 240 129243.291

15 52 02.0 600 129299.154

16 05 02.0 480 129371.480

16 19 02.0 600 129457.161

16 29 02.0 600 129523.048

16 49 02.0 120 129666.000

16 59 02.0 600 129743.067

17 15 02.0 600 129873.223

17 34 02.0 360 130038.264

17 56 02.0 600 130242.508

18 06 02.0 600 130339.473

18 16 02.0 600 130438.795

18 32 32.0 60 130607.283

18 46 32.0 60 130754.333

19 01 32.0 180 130915.389

19 20 02.0 600 131118.045

19 30 02.0 600 131229.008

19 40 02.0 600 131340.711

19 50 02.0 600 131452.955

20 O0 02.0 600 131565.555

20 10 02.0 600 131678.293

20 27 02.0 600 131869.676

20 37 02.0 600 131981.760

20 47 02.0 600 132093.229

20 57 02.0 240 132203.920

0.0167 --0.0059 --0.0057

0.0165 --0.0078 --0.0077

0.0164 0.0010 0.0011

0.0162 --0.0088 --0.0087

0.0162 --0.0088 --0.0078

0.0161 0.0107 0.0108

0.0161 --0.0029 --0.0029

0.0161 --0.0049 --0.0049

0.0160 --0.0049 --0.0030

0.0160 --0.0098 --0.0089

0.0159 --0.0088 --0.0079

0.0159 --0.0049 --0.0040

0.0159 0.0078 0.0097

0.0159 0.0010 0.0018

0.0159 0.0059 0.0067

0.0159 --0.0039 --0.0021

0.0159 0.0020 0.0038

0.0159 0.0000 0.0018

0.0159 --0.0078 --0.0060

0.0159 --0.0039 --0.0021

0.0159 0.0000 0.0018

0.0159 --0.0020 --0.0002

0.0159 --0.0059 --0.0041

0.0159 --0.0059 --0.0041

0.0159 --0.0039 --0.0021

Transmitter Frequency = 29.6682 MHz

21 18 02.0 600 132432.816

21 28 02.0 600 132539.658

21 38 02.0 600 132644.883

21 57 02.0 600 132839.658

22 19 02.0 600 133055.322

22 29 02.0 600 133149.375

22 39 02.0 600 133240.707

22 49 02.0 600 133329.150

23 14 02.0 600 133536.613

23 24 02.0 600 133613.756

23 34 02,0 600 133687.352

0.0159 0.0039 0.0057

0.0159 --0.0039 --0.0041

0.0159 --0.0059 --0.0041

0.0159 0.0020 0.0038

0.0160 --0.0039 --0.0021

0.0160 --0.0059 --0.0040

0.0160 --0.0039 --0.0040

0.0160 --0.0078 --0.0060

0.0161 --0.0078 --0.0059

0.0161 --0.0039 --0.0020

0.0162 0.0020 0.0038

Observation Count Doppler

time (UT2C) time data

h m S (sec) (Hz)

23 44 02.0 600 133757.268

23 54 02.0 600 133823.375

O0 13 02.0 600 133938.121

O0 23 02.0 600 133992.592

O0 33 02.0 600 134042.867

O0 43 02.0 600 134088.840

O0 53 02.0 600 134130.463

01 03 02.0 600 134167.646

01 13 02.0 600 134200.350

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0162 0.0039 0.0058

0.0162 --0.0020 0,0000

0.0164 0.0000 0.0019

0.0165 --0.0039 --0.0020

0.0167 0.0020 0.0039

0.0170 --0.0078 --0.0058

0.0173 --0.0059 --0.0039

0.0178 --0.0117 --0.0117

0.0187 --0.0137 --0.0116

Transmitter Frequency = 29.6682 MHz

Pass _ Nov. 5 and Nov. 6, 1962

14 41 02.0 600 138470.283

14 51 02.0 600 138516.943

15 01 02.0 600 138567.926

15 21 02.0 480 138682.395

15 33 02.0 600 138758.969

15 43 02.0 600 138827.037

15 53 02.0 600 138898.908

16 03 02.0 600 138974.437

16 13 02.0 600 139053.506

16 23 02.0 600 139136.000

16 33 02.0 600 139221.738

16 43 02.0 600 139310.598

16 53 02.0 600 139402.420

17 03 02.0 600 139497.037

17 13 02.0 600 139594.293

17 23 02.0 600 139694.016

17 39 02.0 600 139858.256

17 51 02.0 600 139984.836

18 06 02.0 240 140146.562

18 16 02.0 600 140256.371

18 26 02.0 600 140367.422

18 44 02.0 600 140569.941

18 54 02.0 600 140683.559

19 04 02.0 600 140797.713

0.0171 0.0078 0.0051

0.0168 --0.0078 --0.0086

0.0166 --0.0020 --0.0047

0.0164 --0.0059 --0.0067

0.0162 --0.0078 --0.0086

0.0162 --0.0098 --0.0087

0.0162 0.0000 --0.0009

0.0161 --0.0020 --0.0028

0.0161 --0.0098 --0.0087

0.0161 0.0039 0.0049

0.0161 --0.0020 --0.0029

0.0160 --0.0039 --0.0029

0.0160 0.0000 --0.0010

0.0160 --0.0059 --0.0049

0.0160 --0.0059 --0.0049

0.0160 --0.0039 --0.0030

0.0159 --0.0020 --0.0010

0.0159 0.0000 0.0009

0.0159 --0.0020 --0.0030

0.0159 0.0000 0.0009

0.0159 0.0000 0.0028

0.0159 0.0000 0.0009

0.0159 0.0000 0.0009

0.0159 0.0000 0.0008

Transmitter Frequency = 29.6683 MHz

19 31 02.0 600 141107.152

19 41 02.0 600 141221.518

19 51 02.0 600 141335.461

20 01 02.0 600 141448.783

20 11 02.0 600 141561.275

20 21 02.0 600 141672.740

20 31 02.0 600 141782.992

20 47 02.0 600 141956.348

20 57 02.0 600 142062.500

21 07 02.0 600 142166.746

21 17 02.0 600 142268.885

21 34 02.0 600 142437.211

21 44 02.0 600 142532.807

21 54 02.0 600 142625.658

22 05 02.0 600 142724.441

0.0159 0.0020 0.0047

0.0159 0.0039 0.0047

0.0159 0.0020 0.0028

0.0159 0.0039 0.0047

0.0159 0.0020 0.0028

0.0159 0.0000 --0.0012

0.0159 0.0059 0.0067

0.0159 0.0020 0.0027

0.0159 --0.0020 --0.0012

0.0159 0.0020 0.0028

0.0160 --0.0039 --0.0012

0.0160 --0.0020 --0.0012

0.0160 0.0000 0.0028

0.0160 --0.0039 --0.0011

0.0161 0.0000 0.0028
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Table E-1 (contd)

Observation Count Doppler

time (UT2C) time data

h m S (see) (Hz)

22 15 02.0 600 142811.018

22 25 02.0 600 142894.373

22 35 02.0 600 142974.363

22 45 02.0 600 143050.834

22 55 02.0 600 143123.680

23 12 02.0 600 143238.816

23 26 02.0 600 143325.084

23 36 02.0 600 143381.807

23 46 02.0 600 143434.340

23 56 02.0 600 143482.600

O0 06 02.0 600 143526.510

O0 16 02.0 600 143566.002

O0 26 02.0 600 143601.021

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0161 --0.0020 0.0008

0.0161 0.0020 0.0028

0.0161 0.0059 0.0086

0.0162 0.0000 0.0008

0.0162 0.0020 0.0048

0.0163 --0.0020 --0.0011

0.0165 --0.0039 --0.0030

0.0166 --0.0020 0.0009

0.0168 --0.0020 --0.0010

0.0170 --0.0020 --0.0010

0.0175 --0.0059 --0.0030

0.0181 --0.0078 --0.0049

0.0192 --0.0017 --0.0088

Transmitter Frequency = 29.6683 MHz

Pass -- Nov. 10 and Nov. 11, 1962

13 51 32.0

14 08 32.0

14 20 02.0

14 31 02.0

14 47 02.0

14 57 02.0

15 07 02.0

15 17 02.0

15 38 02.0

5 59 02.0

6 22 02.0

6 39 02.0

6 58 32.0

7 10 02.0

7 29 32.0

7 49 02.0

8 10 02.0

18 20 02.0

18 30 02.0

18 45 02.0

19 04 02.0

19 23 02.0

19 33 02.0

19 53 32.0

20 07 02.0

20 17 02.0

20 27 02.0

20 37 02.0

20 47 02.0

20 57 02.0

21 07 02.0

21 17 02.0

21 27 02.0

21 37 02.0

21 47 02.0

21 57 02.0

22 07 02.0

22 17 02.0

22 32 02.0

22 45 02.0

180 144654.260 0.0190 0.0137 0.0104

300 144718.590 0.0176 --0.0039 --0.0072

120 144769.340 0.0171 0.0098 0.0084

600 144823.445 0.0168 --0.0059 --0.0073

600 144911.098 0.0165 0.0000 --0.0034

600 144971.268 0.0164 0.0000 0.0005

600 145035.459 0.0163 --0.0020 --0.0034

600 145103.578 0.0162 --0.0039 --0.0054

600 145258.887 0.0161 --0.0039 --0.0055

600 145429.854 0.0161 0.0059 0.0043

600 145633.521 0.0160 --0.0039 --0.0036

600 145794.066 0.0160 0.0000 0.0003

600 145987.520 0.0160 0.0039 0.0042

480 146105.781 0.0159 0.0059 0.0061

300 146312.473 0.0159 0.0020 0.0022

600 146525.816 0.0159 0.0020 0.0021

600 146761.227 0.0159 0.0000 0.0002

600 146874.898 0.0159 0.0000 0.0001

600 146989.312 0.0159 0.0020 0.0021

600 147161.875 0.0159 0.0020 0.0001

600 147381.125 0.0159 0.0000 --0.0019

600 147599.828 0.0159 0.0020 0.0001

600 147714.246 0.0159 0.0039 0.0040

540 147946.270 0.0159 --0.0039 --0.0038

600 148096.533 0.0159 0.0000 0.0020

600 148206.211 0.0159 0.0020 0.0020

600 148314.287 0.0159 0.0020 0.0040

600 148420.566 0.0159 0.0020 0.0020

600 148524.871 0.0160 0.0059 0.0040

600 148627.008 0.0160 0.0020 0.0020

600 148726.807 0.0160 0.0000 0.0001

600 148824.094 0.0160 0.0000 0.0001

600 148918.697 0.0160 --0.0039 --0.0039

600 149010.463 0.0161 0.0000 0.0001

600 149099.225 0.0161 0.0039 0.0020

600 149184.828 0.0161 0.0039 0.0020

600 149267.129 0.0161 0.0020 0.0020

600 149345.988 0.0162 0.0000 --0.0019

480 149457.598 0.0162 0.0020 0.0020

600 149547.385 0.0163 0.0000 --0.0018

Observation Count Doppler Error Linear

time (UT2C) time data weight Residual residual

h m s (sec) (Hz) (Hz) (Hz) (Hz)

22 55 02.0 600 149612.020 0.0164 0.0059 0.0040

23 14 02.0 600 149723.678 0.0167 0.0137 0.0119

23 24 02.0 600 149776.389 0.0169 0.0039 0.0021

TransmitterFrequency = 29.6684 MHz

23 52 02.0 600 149901.174 0.0182 --0.0039 --0.0037

O0 13 02.0 600 149971.770 0.0225 --0.0098 --0.0076

O0 23 02.0 600 149998.363 0.0298 --0.0215 --0.0212

Transmitter Frequency = 29.6685 MHz

Pass -- Nov. 17, 1962

13 26 02.0 120 154375.750 0.0189 0.0078 0.0081

13 38 02.0 600 154423.225 0.0178 --0.0039 --0.0017

13 48 02.0 600 154467.498 0.0173 --0.0039 --0.0037

21 07 26.0 50 117215.279 0.0161 0.0205 0.0218

Transmitter Frequency = 29.6682 MHz

21 20 26.0 50

21 30 26.0 50

21 40 26.0 50

21 50 26.0 50

22 02 26.0 50

22 12 26.0 50

22 22 26.0 50

22 33 26.0 50

22 43 26.0 50

22 53 26.0 50

23 03 26.0 50

23 13 26.0 50

23 23 26.0 50

23 33 26.0 50

23 43 26.0 50

23 53 26.0 50

O0 03 26.0 50

O0 13 26.0 50

O0 23 26.0 50

13 58 02.0 600

14 08 02.0 600

14 33 02.0 480

14 46 02.0 600

14 56 02.0 600

15 06 02.0 600

15 16 02.0 600

15 31 32.0 540

15 47 02.0 600

15 57 02.0 600

16 12 32.0 540

16 27 02.0 600

16 47 02.0 240

16 57 02.0 600

17 07 02.0 600

17 17 02.0 600

17 27 02.0 600

117307.619 0.0161 --0.0098 --0.0074

117382.520 0.0161 --0.0049 --0.0045

117460.640 0.0160 --0.0010 --0.0005

117541.840 0.0160 0.0137 0.0152

17643.060 0.0160 --0.0195 --0.0180

17730.460 0.0160 0.0039 0.0045

17820.380 0.0159 --0.0029 --0.0033

17922.060 0.0159 0.0215 0.0212

18016.720 0.0159 --0.0254 --0.0247

18113.460 0.0159 0.0137 0.0135

18211.939 0.0159 --0.0166 --0.0158

18312.079 0.0159 --0.0039 --0.0030

18413.619 0.0159 --0.0127 --0.0137

18516.399 0.0159 --0.0107 --0.0108

18620.220 0.0159 0.0039 0.0039

18724.840 0.0159 --0.0078 --0.0078

18830.119 0.0159 0.0127 0.0118

18935.800 0.0159 0.0146 0.0148

19041.680 0.0159 0.0000 --0.0008

54516.115 0.0170 --0.0039 --0.0057

54569.014 0.0167 0.0039 0.0060

54719.305 0.0164 --0.0020 0.0001

154807.396 0.0163 --0.0078 --0.0077

154879.521 0.0162 0.0020 0.0040

154955.318 0.0162 --0.0020 --0.0019

155034.686 0.0161 0.0020 0.0020

155164.387 0.0161 --0.0137 --0.0118

155301.875 0.0161 --0.0039 --0.0020

155394.381 0.0160 --0.0059 --0.0060

155543.264 0.0160 --0.0059 --0.0060

155688.170 0.0160 --0.0039 --0.0021

155895.812 0.0160 0.0020 0.0017

156002.748 0.0159 --0.0078 --0.0041

156111.396 0.0159 --0.0020 --0.0022

156221.619 0.0159 --0.0020 --0.0003

156333.227 0.0159 --0.0078 --0.0081
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Table E-1 (contd)

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

17 37 02.0 600 156446.043

17 49 02.0 120 156582.666

18 04 02.0 600 156755.027

18 14 02.0 600 156870.521

18 24 02.0 600 156986.266

18 34 32.0 540 157107.848

18 49 02.0 600 157275.410

18 59 02.0 600 157390.457

19 09 02.0 600 157504.836

19 19 02.0 600 157618.369

19 29 02.0 600 157730.852

19 39 02.0 600 157842.074

19 49 02.0 600 157951.861

19 59 02.0 600 158060.004

20 09 02.0 600 158166.326

20 19 02.0 600 158270.643

20 29 02.0 600 158372.775

20 39 02.0 600 158472.541

20 49 02.0 600 158569.760

20 59 02.0 600 158664.287

21 09 02.0 600 158755.953

21 19 02.0 600 158844.592

21 29 02.0 600 158930.059

21 39 02.0 600 159012.217

21 59 02.0 600 159166.021

22 09 02.0 600 159237.430

22 19 02.0 600 159305.000

22 29 02.0 600 159368.637

22 53 02.0 600 159504.691

23 03 02.0 600 159554.227

23 13 02.0 600 159599.434

23 26 02.0 600 159651.615

23 46 02.0 600 159717.146

0.0159 0.0059 0.0075

0.0159 --0.0039 --0.0043

0.0159 0.0059 0.0074

0.0159 0.0078 0.0094

0.0159 0.0039 0.0054

0.0159 --0.0020 --0.0004

0.0159 --0.0020 --0.0024

0.0159 0.0020 0.0054

0.0159 --0.0020 --0.0024

0.0159 0.0000 0.0015

0.0159 0.0059 0.0054

0.0159 0.0020 0.0015

0.0159 0.0078 0.0073

0.0159 0.0020 0.0034

0.0160 --0.0020 --0.0005

0.0160 --0.0020 --0.0025

0.0160 0.0020 0.0014

0.0160 0.0020 0.0034

0.0160 --0.0078 --0.0083

0.0161 --0.0059 --0.0044

0.0161 --0.0020 --0.0005

0.0161 --0.0020 --0.0025

0.0161 --0.0039 --0.0044

0.0162 0.0039 0.0034

0.0162 --0.0020 --0.0025

0.0163 0.0039 0.0034

0.0164 0.0000 0.0015

0.0165 0.0000 --0.0005

0.0170 --0.0117 --0.0122

0.0173 --0.0078 --0.0082

0.0179 --0.0039 --0.0024

0.0215 --0.0098 --0.0082

0.0269 --0.0176 --0.0179

17 16 02.0 600 169800.719

17 26 02.0 600 169915.168

17 36 02.0 600 170030.182

17 46 02.0 600 170145.568

17 56 02.0 600 170261.119

18 06 02.0 600 170376.629

18 23 02.0 600 170572.363

18 33 02.0 600 170686.779

18 43 02.0 600 170800.426

18 53 02.0 600 170913.102

19 03 02.0 600 171024.602

19 13 02.0 600 171134.748

19 23 02.0 600 171243.340

19 38 02.0 600 171402.902

19 48 02.0 600 171506.799

19 58 02.0 600 171608.500

20 09 02.0 600 171707.820

20 18 02.0 60 171809.500

20 37 02.0 600 171980.941

20 47 02.0 600 172069.453

20 57 02.0 600 172154.816

21 07 02.0 600 172236.889

0.0159 0.0039 0.0039

0.0159 0.0039 0.0058

0.0159 0.0000 0.0019

0.0159 0.0020 0.0019

0.0159 0.0020 0.0038

0.0159 --0.0039 --0.0021

0.0159 0.0000 0.0018

0.0159 --0.0159 --0.0021

0.0159 0.0000 0.0018

0.0159 0.0000 0.0037

0.0159 0.0000 0.0018

0.0160 0.0039 0.0037

0.0160 0.0039 0.0056

0.0160 0.0039 0.0037

0.0160 0.0039 0.0056

0.0160 --0.0039 0.0056

0.0160 --0.0078 --0.0022

0.0161 --0.0020 0.0017

0.0161 --0.0039 --0.0002

0.0161 --0.0039 --0.0022

0.0162 --0.0039 --0.0022

0.0162 0.0039 0.0056

Transmitter Frequency = 29.6687 MHz

21 27 32.0 60 172394.633

21 46 02.0 600 172523.205

22 09 02.0 600 172664.553

22 19 02.0 600 172719.264

22 29 02.0 600 172769.762

22 39 02.0 600 172815.986

22 49 02.0 600 172857.857

22 59 02.0 600 172895.301

0.0163 --0.0059 --0.0041

0.0165 --0.0039 --0.0041

0.0168 --0.0020 0.0018

0.0172 --0.0020 --0.0002

0.0176 --0.0078 --0.0060

0.0184 --0.0039 --0.0021

0.0197 0.0000 0.0019

0.0222 --0.0215 --0.0196

Transmitter Frequency = 29.6686 MHz

Pass -- Nov. 26, 1962

13 32 32.0

13 49 02.0

13 59 02.0

14 09 02.0

14 19 02.0

14 29 02.0

14 39 02.0

14 49 02.0

14 59 02.0

15 09 02.0

15 19 02.0

15 29 02.0

15 39 02.0

15 49 02.0

15 59 02.0

16 09 02.0

16 19 02.0

16 29 O2.0

16 44 02.0

16 54 02.0

60 167779.066 0.0170 --0.0117 --0.0090

600 167873.725 0.01 66 0.0039 0.0065

600 167936.352 0.0165 --0.0039 --0.0013

600 168002.920 0.0164 --0.0098 --0.0072

600 168073.334 0.0163 --0.0020 0.0006

600 168147.465 0.0162 0.0000 0.0025

600 168225.182 0.0162 --0.0039 --0.0015

600 168306.375 0.0161 --0.0020 0.0005

600 168390.904 0.0161 0.0020 0.0043

600 168478.619 0.0161 0.0020 0.0043

600 168569.373 0.0161 0.0000 0.0004

600 168663.021 0.0161 0.0000 0.0003

600 168759.396 0.0160 --0.0020 0.0003

600 168858.336 0.0160 --0.0059 --0.0036

600 1 68959.680 0.0160 0.0000 0.0002

600 169063.248 0.01 60 0.0059 0.0080

600 1 69168.846 0.0160 --0.0020 0.0002

600 169276.316 0.0160 0.0020 0.0021

600 1 69440.604 0.0159 0.0020 0.0040

600 169551.908 0.0159 0.0039 0.0040

Transmitter Frequency _ 29.6687 MHz

Pass -- Dec. !, 1962

12 38 26.0 50 175094.340

12 48 26.0 50 175133.359

12 58 26.0 50 175176.760

13 08 26.0 50 175224.420

13 18 26.0 50 175276.359

13 28 26.0 50 175332.420

13 38 26.0 50 175392.578

13 48 26.0 50 175456.719

13 58 26.0 50 175524.760

14 08 26.0 50 175596.500

14 18 26.0 50 175671.959

14 28 26.0 50 175750.920

14 39 26.0 50 175841.699

14 49 26.0 50 175927.658

14 59 26.0 50 176016.639

15 09 26.0 50 176108.639

15 19 26.0 50 176203.398

15 29 26.0 50 176300.799

15 39 26.0 50 176400.658

0.0209 0.0137 0.0150

0.0190 0.0176 0.0208

0.0180 0.0371 0.0364

0.0175 0.0078 0.0090

0.0170 0.0176 0.0207

0.0168 --0.0078 --0.0067

0.0166 --0.0098 --0.0106

0.0165 --0.0117 --0.0106

0.0164 0.0117 0.0128

0.0163 --0.0332 --0.0322

0.0162 --0.0078 --0.0068

0.0162 --0.0059 --0.0049

0.0161 0.0020 0.0029

0.0161 0.0313 0.0341

0.0161 --0.0176 --0.0149

0.0161 0.0078 0.0106

0.0161 0.0020 0.0027

0.0161 0.0039 0.0046

0.0160 --0.0020 0.0007
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Table E-1 (contd)

Observation Count Doppler

time (UT2C) tlme data

h m s (see) (Hz)

15 49 26.0 50 176502.818

15 59 26.0 50 176607.100

16 09 26.0 50 176713,299

16 19 26.0 50 176821.260

16 29 26.0 50 176930.840

16 39 26.0 50 177041.719

16 49 26.0 50 177153.859

16 59 26.0 50 177266.939

17 09 26.0 50 177380.859

17 19 26.0 50 177495.340

17 29 26.0 50 177610.238

17 39 26.0 50 177725.340

17 49 26.0 50 177840.439

17 59 26.0 50 177955.340

18 09 26.0 50 178069.840

18 19 26.0 50 178183.738

18 29 26.0 50 178296.859

18 39 26.0 50 178408.939

18 49 26.0 50 178519.898

18 59 26.0 50 178629.398

19 09 26.0 50 178737.398

19 19 26.0 50 178843.639

19 29 26.0 50 178947.920

19 39 26.0 50 179050.059

19 49 26,0 50 179149.959

19 59 26.0 50 179247.359

20 09 26.0 50 179342.139

20 19 26.0 50 179434.139

20 29 26.0 50 179523.199

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0160 0.0020 0.0026

0.0160 0.0078 0.0084

0.0160 --0.0098 --0.0072

0.0160 --0.0195 --0.0170

0.0160 0.0195 0.0220

0.0159 --0.0215 --0.0190

0.0159 0.0137 0.0141

0.0159 --0.0078 --0.0074

0.0159 0.0137 0.0141

0.0159 --0.0039 --0.0035

0.0159 --0.0020 --0.0016

0.0159 0.0020 0.0043

0.0159 0.0000 0.0023

0.0159 0.0039 0.0062

0.0159 0.0039 0.0061

0.0159 0.0020 0.0042

0.0159 0.0176 0.0178

0.0160 --0.0137 --0.0115

0.0160 0.0176 0.0198

0.0160 --0.0273 --0.0271

0.0160 --0.0039 --0.0037

0.0160 0.0098 0.0139

0.0160 0.0078 0.0100

0.0160 --0.0215 --0.0213

0.0161 0.0020 0.0060

0.0161 --0.0078 --0.0057

0.0161 --0.0078 --0.0076

0.0161 0.0000 0.0021

0.0161 0.0176 0.0217

Transmitter Frequency _ 29.6689 MHz

Puss -- Dec. 7,1962

12 28 32.0 180 184027.955

12 40 32.0 540 184077.623

13 00 02.0 600 184171.289

13 14 02,0 600 184248,285

13 35 02.0 600 184378.553

13 59 02.0 600 184548.031

14 09 02.0 600 184624.795

14 19 02.0 600 184704.973

14 29 02.0 600 184788.463

14 39 02.0 600 184875.092

14 49 02.0 600 184964.736

15 02 32.0 60 185090.133

15 15 32.0 180 185215.582

15 32 32.0 540 185385.797

15 45 02.0 240 185514.832

16 02 02.0 600 185695.219

16 24 02.0 600 185935.266

16 38 02.0 600 186091.141

16 53 32.0 60 186265.783

17 12 02.0 600 186476.113

17 22 02.0 600 186590.227

17 40 02.0 600 186795.613

17 50 02.0 600 186909.367

18 O0 02.0 120 187022.625

0.0209 0.0117 0.0069

0.0188 0.0078 0.0029

0.0174 0.0098 0.0048

0.0169 0.0059 0.0008

0.0165 0.0098 0.0047

0.0163 --0.0020 --0.0052

0.0162 0.0020 --0.0013

0.0162 --0.0059 --0.0072

0.0162 0.0039 0,0006

0.0161 --0.0020 --0.0014

0.0161 0.0020 0.0005

0.0161 --0.0078 --0.0113

0.0161 0.0020 0.0004

0.0160 --0.0059 --0.0094

0.0160 --0.0117 --0.0153

0.0160 0.0117 0.0080

0.0160 0.0000 --0.0037

0.0160 --0.0039 --0.0096

0.0159 0.0117 0.0098

0.0159 0.0000 0.0000

0.0159 0.0000 0.0000

0.0159 --0.0020 --0.0039

0.0159 0.0078 0.0058

0.0160 0.0020 --0.0020

Observation Count Doppler

time (UT2C) time data

h m s (sec) (Hz)

18 19 02.0 600 187235.635

18 34 02.0 360 187401.187

18 53 32.0 60 187611.715

19 19 02.0 600 187876.797

19 31 02.0 600 187996.844

19 41 02.0 600 188094.254

19 51 02.0 600 188189.117

20 07 32.0 420 188339.676

20 22 02.0 600 188465.215

20 32 02.0 600 188547.967

20 42 02.0 600 188627.383

20 52 02.0 600 188703.352

21 07 02.0 600 188810.515

21 17 02.0 600 188877.336

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0160 --0.0039 --0.0060

0.0160 --0.0039 --0.0040

0.0160 --0.0020 --0.0079

0.0160 0.0020 --0.0002

0.0160 0.0078 0.0077

0.0161 0.0000 --0.0041

0.0161 0.0020 --0.0002

0,0161 --0.0059 --0.0099

0.0162 --0.0059 --0.0099

0.0162 0.0020 --0.0021

0.0163 --0.0039 --0.0099

0.0162 --0.0039 --0.0040

0.0165 0.0039 0.0019

0.0167 --0.0039 --0.0079

Transmitter Frequency = 29.6689 MHz

Pass -- Dec. 8,1962

12 29 02.0 240 185494.461

12 36 32.0 300 185525.510

12 43 02.0 120 185554.316

12 55 32.0 180 185614.855

13 05 02.0 600 185665.352

13 11 02.0 120 185698.908

13 16 02.0 120 185728.107

13 24 02.0 120 185776.916

13 33 02.0 480 185834.910

13 40 32.0 60 185885.432

13 48 02.0 360 185938.207

14 45 02.0 120 186402.250

14 51 32.0 180 186461.609

14 59 32.0 60 186536.266

15 04 32.0 180 186583.811

15 12 32.0 180 186661.205

15 19 32.0 60 186730.199

16 10 32.0 180 187263.393

16 20 02.0 600 187367.523

16 26 02.0 120 187433.773

17 53 02.0 600 188418.500

18 03 02.0 600 188531.180

18 13 02.0 600 186643.057

18 23 02.0 600 188753.941

18 28 32.0 60 188814.482

18 37 02.0 600 188907.113

18 45 02.0 360 188993.424

18 58 02.0 600 189131.357

19 08 02.0 600 189235.377

19 14 02.0 120 189296.932

19 17 32.0 180 189332.416

19 25 02.0 360 189407.535

19 36 02.0 600 189515.299

19 46 02.0 600 189610.703

19 56 02.0 600 189703.428

20 06 02.0 600 189793.336

20 25 32.0 300 189960.033

20 37 32.0 540 190056.393

21 O0 02.0 600 190223.723

0.0347 --0.0020 --0.0025

0.0292 0.0020 --0.0006

0.0503 0.0000 --0.0026

0.0358 0.0098 0.0091

0.0173 --0.0059 --0.0066

0.0464 --0.0020 --0.0007

0.0461 --0.0078 --0.0086

0.0457 --0.0020 --0.0047

0.0192 --0.0039 --0.0067

0.0520 --0.0039 --0.0028

0.0225 --0.0059 --0.0048

0.0441 0.0254 0.0224

0.0328 0.0098 0.0087

0.0508 0.0000 --0.0011

0.0327 --0.0039 --0.0031

0.0327 0.0039 0.0027

0.0507 0.0059 0.0047

0.0326 --0.0059 --0.0092

0.0161 0.0020 --0.0034

0.0437 --0.0117 --0.0112

0.0161 --0.0059 --0.0114

0.0161 --0.0078 --0.0134

0.0161 --0.0039 --0.0114

0.0161 0.0039 --0.0017

0.0505 0.0059 0.0042

0.0161 0.0000 --0.0056

0.0219 --0.0117 --0.0154

0.0161 0.0020 --0.0056

0,0161 --0,0039 --0,0076

0.0438 0.0156 0.0080

0.0327 0.0059 --0.0017

0.0220 0.0020 --0.0056

0.0162 --0.0078 --0.0115

0.0162 --0.0039 --0.0076

0.0162 --0.0078 --0.0154

0.0162 --0.0039 --0.0037

0.0248 --0.0117 --0.0193

0.0173 --0.0078 --0.0134

0.0166 --0.0020 --0.0095
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Table E-1 [contd)

Observation Count Doppler

time (UT2C) time data

h m s (see) (Hz)

21 10 02.0 600 190292.182

21 20 02.0 600 190356.826

21 30 02.0 600 190417.537

21 40 02.0 600 190474.246

21 50 02.0 600 190526.869

22 O0 02.0 600 190575.307

22 10 02.0 600 190619.498

22 27 02.0 240 190684.861

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0167 0.0098 0.0062

0.0169 0.0156 0.0081

0.0172 0.0000 --0.0055

0.0175 --0.0059 --0.0114

0.0181 --0.0020 --0.0074

0.0189 --0.0039 --0.0132

0.0206 --0.0039 --0.0152

0.0507 --0.0234 --0.0308

Transmitter Frequency _ 29.6689 MHz

Pass-- Dec. 11,1962

12 28

12 37

12 46

12 56

13 06

13 16

13 26

13 35

13 46

13 55

14 05

14 15

14 25

14 35

14 44

14 55

5 12

5 22

5 32

5 42

5 56

6 02

16 11

16 21

16 27

32.0 60 189813.865

02.0 120 189851.057

02.0 600 189893.906

02.0 600 189945.305

02.0 600 190000.807

02.0 600 190060.318

02.0 600 190123.762

32.0 540 190187.533

02.0 120 190261.840

02.0 600 190328.920

02.0 600 190406.611

02.0 600 190487.641

02.0 600 190571.900

02.0 600 190659.229

32.0 540 190744.893

32.0 420 190847.187

02.0 600 191006.582

02.0 600 191106.295

02.0 600 191208.166

02.0 600 191312.033

02.0 600 191460.428

02.0 120 191524.916

02.0 600 191622.783

02.0 600 191732.646

32.0 180 191804.615

0.0627 --0.0020 --0.0012

0.0510 0.0176 0.0164

0.0180 0.0078 0.0085

0.0175 0.0059 0.0065

0.0172 0.0078 0.0065

0.0169 0.0039 0.0006

0.0167 0.0098 0.0084

0.0176 0.0098 0.0083

0.0448 0.0117 0.0122

0.0164 0.0039 0.0044

0.0164 0.0098 0.0121

0.0163 0.0020 0.0004

0.0163 0.0078 0.0062

0.0162 0.0039 0.0023

0.0172 0,0156 0,0139

0.0201 0.0078 0.0080

0.0162 0.0039 0.0021

0.0161 0.0039 0.0040

0.0161 0.0020 0.0001

0.0161 0.0078 0.0040

0.0161 0.0039 0.0020

0.0438 --0.0117 --0.0137

0.0161 0.0000 --0.0020

0.0161 0.0000 0.0000

0.0326 0.0039 0.0038

Transmitter Frequency

17 19 02.0 600

17 29 02.0 600

17 39 02.0 600

17 49 02.0 600

17 59 02.0 600

18 09 02.0 600

18 19 02.0 600

18 29 02.0 600

18 39 02.0 600

18 49 02.0 600

18 58 32.0 540

19 13 02.0 600

19 26 02.0 600

19 36 02.0 600

19 46 02.0 600

19 52 02.0 120

= 29.6690MHz

192385.285 0.0161 0.0078 0.0076

192498.633 0.0161 0.0098 0.0115

192611.715 0.0161 0.0039 0.0037

192724.350 0.0161 0.0078 0.0076

192836.330 0.0161 0.0000 0.0017

192947.477 0.0161 0.0059 0.0075

193057.590 0.0161 0.0176 0.0173

193166.453 0.0161 0.0059 0.0036

193273.914 0.0161 0.0078 0.0075

193379.773 0.0161 0.0137 0.0114

193478.709 0.0171 0.0234 0.0231

193626.186 0.0162 0.0098 0.0075

193754.502 0.0162 0.0137 0.0153

193850.426 0.0162 0.0137 0.0134

193943.748 0.0162 0.0117 0.0095

193998.549 0.0442 0.0156 0.0153

Observation Count Doppler

time (UT2C) time data

h m s (see) (Hz)

20 01 02.0 600

20 11 02.0 600

20 21 02.0 600

20 31 02.0 600

20 41 02.0 600

20 51 02.0 600

21 05 02.0 600

21 15 02.0 600

21 25 02.0 600

21 35 02.0 600

21 45 02.0 600

21 55 02.0 600

22 03 02.0 360

22 10 02.0 120

22 16 02.0 240

22 23 32.0 180

194078.514

194164.666

194247.689

194327.451

194403.793

194476.605

194572.396

194636.268

194696.240

194752.215

194804.090

194851.781

194887.008

194915.549

194938.258

194964.510

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0163 0.0000 0.0036

0.0163 0.0039 0.0017

0.0164 0.0059 0.0056

0.0164 0.0156 0.0134

0.0165 0.0078 0.0076

0.0166 0.0000 --0.0002

0.0168 --0.0020 --0.0041

0.0170 --0.0078 --0.0061

0.0173 0.0000 --0.0002

0.0177 0.0098 0.0077

0.0184 0.0098 0.0116

0.0195 --0.0098 --0.0079

0.0288 --0.0156 --0.0177

0.0647 --0.0176 --0.0176

0.0471 --0.0234 --0.0254

0.0818 --0.0234 --0.0215

TransmitterFrequency = 29.6690 MHz

Pass--Dec. 12,1962

12 45 32.0 60 191333.482 0.0565 0.0098 0.0113

12 51 02.0 240 191361.670 0.0298 0.0039 0.0054

Transmifler Frequency

13 13 32.0 60

13 26 02.0 360

13 39 02.0 600

13 49 02.0 600

13 59 02.0 600

14 09 02.0 600

14 19 02.0 600

14 29 02.0 600

14 36 32.0 300

14 47 02.0 600

14 57 02.0 600

15 07 02.0 600

15 17 02.0 600

15 27 02.0 600

15 37 02.0 600

15 47 02.0 600

15 57 02.0 600

16 07 02.0 600

16 13 02.0 120

Transmitter Frequency

16 31 32.0 60

16 41 02.0 480

16 52 32.0 300

17 05 02.0 600

17 15 02.0 600

17 25 02.0 600

17 35 02.0 600

17 41 02.0 120

17 52 02.0 600

18 02 02.0 600

29.6689 MHz

191489.398 0.0531 0.0039 0.0073

191569.252 0.0227 0.0039 0.0053

191658.623 0.0165 0.0020 0.0013

191731.508 0.0165 0.0020 0.0033

191807.924 0.0164 0.0020 0.0032

191887.738 0.0164 --0.0059 --0.0046

191970.834 0.0163 --0.0020 --0.0008

192057.059 0.0162 --0.0039 --0.0027

192123.605 0.0247 --0.0039 --0.0028

192219.687 0.0162 --0.0078 --0.0087

192313.898 0.0162 --0.0039 --0.0048

192410.658 0.0162 --0.0020 0.0010

192509.801 0.0161 --0.0020 --0.0048

192611.158 0.0161 --0.0059 --0.0049

192714.566 0.0161 0.0020 0.0010

192819.828 0.0161 --0.0020 --0.0030

192926.777 0.0161 --0.0020 --0.0010

193035.225 0.0161 --0.0039 --0.0011

193100.891 0.0438 0.0039 0.0028

= 29.669OMHz

193306.365 0.0505 0.0156 0.0145

193412.912 0.0185 0.0039 0.0047

193542.643 0.0245 --0.0020 0.0008

193684.311 0.0161 --0.0020 --0.0012

193797.859 0.0161 --0.0039 --0.0051

193911.395 0.0161 --0.0078 --0.0051

194024.723 0.0161 --0.0078 --0.0091

194092.566 0.0437 0.0020 0.0027

194216.340 0.0161 --0.0098 --0.0071

194328.121 0.0161 --0.0059 --0.0071

84 JPL TECHNICAL REPORT 32-816



Table E-1 (contd)

Observation Count

time (UT2C) time

h m s (see)

18 12 02.0 600

18 20 32.0 420

18 30 02.0 600

18 40 02.0 600

18 50 02.0 600

19 O0 02.0 600

19 10 02.0 600

19 18 02.0 360

19 23 26.0 50

19 35 26.0 50

19 46 26.0 50

20 01 26.0 50

20 14 26.0 50

20 27 26.0 50

20 41 26.0 50

20 53 26.0 50

21 07 26.0 50

21 21 26.0 50

21 32 26.0 50

21 44 26.0 50

21 54 26.0 50

22 05 26.0 50

22 15 26.0 50

Doppler Error Linear

data weight Residual residual

(Hz) (Hz) (Hz) (Hz)

194438.975 0.0161 --0.0020 --0.0013

194532.346 0.0200 --0.0020 0.0007

194635.531 0.0161 --0.0039 --0.0052

194742.750 0.0161 --0.0059 --0.0071

194848.316 0,0161 --0.0098 --0.0091

194952.066 0.0161 0.0039 0.0026

195053.797 0.0162 0.0078 0.0104

195133.666 0.0220 --0.0039 --0.0013

195186.738 0.0508* --0.0098 --0.0091

195302.078 0.0509 0.0078 0.0105

195404.500 0.0510 0.0137 0.0144

195538.699 0.0511 0.0215 0.0203

195649.500 0.0513 --0.0254 --0.0227

195754.979 0.0515 0.0117 0.0125

195862.139 0.0519 --0.0098 --0.0090

195948.500 0.0524 0.0039 0.0047

196042.500 0.0531 --0.0059 --0.0050

196129.000 0.0542 0.0059 0.0048

196191.500 0.0557 0.0020 0.0048

196254.039 0.0583 --0.0176 --0.0166

196301.619 0.0625 0.0039 0.0049

196349.020 0.0723 --0.0176 --0.0165

196387.658 0.0957 0.0039 0.0030

TransmiflerFrequency

Pass--Dec. 13, 1962

12 24 02.0 600

12 34 02.0 600

12 40 02.0 120

12 52 02.0 600

12 59 02.0 240

19 49 02.0 600

20 02 02.0 600

20 10 32.0 420

20 23 02.0 600

20 33 02.0 600

20 41 32.0 420

20 55 02.0 600

21 05 O2.0 600

21 15 02.0 600

21 25 02.0 600

21 35 02.0 600

21 45 O2.0 6O0

21 55 02.0 60O

22 04 32.0 54O

= 29.669OMHz

192763.854 0.0205 0.0117 0.0138

192809.088 0.0189 0.0039 0.0060

192838.115 0.0498 0.0117 0.0158

192901.174 0.0176 0.0059 0.0080

192940.465 0.0292 0.0020 0.0041

197049.248 0.0162 0.0000 --0.0004

197167.805 0.0163 --0.0098 --0.0101

197242.682 0.0203 --0.0117 --0.0100

197348.531 0.0164 --0.0059 --0.0059

197429.590 0.0165 0.0000 0.0000

197495.887 0.0206 0.0000 0.0001

197595.760 0.0167 0.0137 0.0159

197665.488 0.0169 0.0059 0.0082

197731.441 0.0172 --0.0039 --0.0034

197793.537 0.0175 --0.0039 --0.0013

197851.672 0.0181 --0.0117 --0.0090

197905.760 0.0190 --0.0234 --0.0205

197955.746 0.0206 --0.0254 --0.0243

197999.410 0.0253 --0.0215 --0.0183

Transmitter Frequency = 29.6690 MHz

Pass -- Dec. 14, 1962

14 16 32.0 300 196786.809 0.0248 --0.0098 --0.0101

14 28 02.0 600 196966.967 0.0162 --0.0020 0.0010

:¢Data during the Dec. 12 pass with a count time of 50 sec. are sampled every

minute for the solutions of Section V. The error weight is appropriately larger

as a result (Cf. Eq. 163). Not every measurement with a 50-see. count time

is listed for this pass. Instead, every tenth point is given as a representative
sample.

Observation Count

time (UT2C) time

h m s (sec)

14 38 02.0 600

14 44 32.0 180

14 54 02.0 600

15 04 02.0 600

15 14 02.0 600

15 22 02.0 360

15 31 02.0 120

15 42 02.0 600

15 52 02.0 600

16 02 02.0 600

16 12 02.0 600

16 22 02.0 600

16 27 32.0 60

Transmitter Frequency

Doppler

data

(Hz)

197130.971

197241.139

197408.449

197591.656

197782.719

197941.207

198126.125

198362.418

198586.738

198820.998

199065.846

199322.012

199467.516

= 29.6691MHz

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0162 0.0000 0.0018

0.0328 --0.0059 --0.0064

0.0162 0.0020 0.0015

0.0162 0,0000 0.0013

0.0162 0.0020 0.0045

0.0220 --0.0039 --0.0039

0.0438 --0.0039 --0.0035

0.0161 0.0000 --0.0012

0.0161 0.0000 --0.0025

0.0161 --0.0059 --0.0051

0.0161 --0.0020 --0.0029

0.0161 --0.0020 --0.0032

0.0505 0.0078 0.0076

16 58 02.0

17 08 02.0

17 18 02.0

17 24 32.0

17 56 32.0

18 13 02.0

18 27 02.0

18 37 02.0

18 47 02.0

18 57 02.0

19 02 32.0

19 13 02.0

19 23 02.0

19 33 02.0

19 43 02.0

19 53 02.0

20 03 02.0

20 08 32.0

600 200352.441

600 200673.355

600 201011.875

180 201241.326

300 202508.271

600 203261.273

600 203957.930

600 204488.713

600 205045.697

600 205625.619

60 205951.883

600 206586.289

600 207192.859

600 207789.252

600 208360.557

600 208891.203

600 209366.773

60 209603.516

0.0161 0.0078 0.0075

0.0161 0.0078 0.0104

0.0161 0.0000 --0.0029

0.0326 --0.0039 --0.0020

0.0245 0.0000 0.0014

0.0161 0.0000 0.0045

0.0161 --0.0039 0.0018

0.0161 --0.0156 --0.0094

0.0161 --0.0039 0.0014

0.0161 --0.0059 --0.0012

0.0508 --0.0156 --0.0079

0.0162 --0.0176 --0.0039

0.0162 --0.0137 --0.0035

0.0162 --0.0098 0.0065

0.0162 --0.0098 0.0047

0.0163 --0.0137 0.0014

0.0163 --0.0176 --0.0020

0.0514 --0.0234 --0.0072

Transmiffer Frequency

20 57 32.0 300

21 08 02.0 600

21 18 02.0 600

21 28 02.0 600

21 38 02.0 600

21 48 02.0 600

21 58 02.0 600

22 08 02.0 600

22 14 32.0 180

= 29.6692MHz

210726.760

210773.148

210776.246

210746.910

210692.910

210620.730

210535.521

210441.271

210376.793

0.0256 --0.0137 0.0014

0.0170 --0.0195 --0.0052

0.0173 --0.0176 --0.0079

0.0178 --0.0020 0.0065

0.0186 --0.0039 0.0059

0.0198 --0.0039 0.0040

0.0223 --0.0059 0.0013

0.0284 --0.0137 --0.0062

0.0789 --0.0234 --0.0142

Transmiff_ Frequency

Pass -- Dec. 15,1962

12 54 32.0 60

15 08 02.0 360

15 18 32.0 540

15 31 02.0 120

15 41 02.0 600

15 51 02.0 600

= 29.6691MHz

203074.365 0.0546 --0.0059 0.0009

203988.371 0.0220 0.0020 0.0062

204083.123 0.0171 --0.0039 0.0040

204198.932 0.0438 --0.0273 --0.0231

204293.979 0.0161 --0.0039 0.0003

204390.713 0.0161 --0.0078 --0.0019
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Table E-1 (contd)

Observation Count Doppler Error Linear

time (UT2C) time data weight R_eldual residual

h m S (se¢) (Hz) (Hz) (Hz) (Hz)

Observation Count Doppler Error Linear

time (UT2C) time data weight Residual residual

h m s (sec) (Hz) (Hz) (Hz) (Hz)

16 01 02.0 600 204489.043 0.0161 --0.0137 --0.0120

16 il 02.0 600 204588.807 0.0161 --0.0039 0.0015

16 21 02.0 600 204689.777 0.0161 --0.0039 0.0013

16 31 02.0 600 204791.783 0.0161 0.0039 0.0078

16 41 02.0 600 204894.607 0.0161 --0.0020 0.0021

16 51 02.0 600 204998.074 0.0161 0.0020 0.0058

17 01 02.0 600 205101.980 0.0161 0.0039 0.0119

17 11 02.0 600 205206.109 0.0161 --0.0039 --0.0001

17 17 32.0 180 205273.826 0.0326 --0.0137 --0.0096

17 35 02.0 600 205455.807 0.0161 --0.0215 --0.0158

17 41 02.0 120 205517.965 0.0437 --0.0273 --0.0224

17 52 32.0 60 205636.500 0.0505 --0.0137 --0.0108

16 04 02.0 600 205082.590 0.0161 --0.0313 --0.0297

16 14 02.0 600 205187.516 0.0161 --0.0195 --0.0147

16 24 02.0 600 205293.479 0.0161 --0.0059 --0.0030

16 34 02.0 600 205400.277 0.0161 0.0020 0.0064

16 41 02.0 240 205475.391 0.0272 --0.0156 --0.0133

16 52 02.0 600 205593.980 0.0161 --0.0195 --0.0172

17 02 02.0 600 205702.104 0.0161 --0.0137 --0.0077

17 12 02.0 600 205810.305 0.0161 --0.0273 --0.0233

17 22 02.0 600 205918.408 0.0161 --0.0391 --0.0353

17 32 02.0 600 206026.252 0.0161 --0.0234 --0.0179

17 42 02.0 600 206133.578 0.0161 --0.0313 --0.0300

17 48 02.0 120 206197.732 0.0438 0.0059 0.0091

Transmi_erFrequency _ 29.6692 MHz

19 30 02.0 240 206571.490 0.0273 0.0176 0.0232

19 41 02.0 600 206664.609 0.0162 0.0078 0.0134

19 53 02.0 600 206762.541 0.0163 0.0059 0.0130

20 03 02.0 600 206840.965 0.0164 0.0020 0.0072

20 10 32.0 300 206897.883 0.0249 --0.0098 --0.0027

20 21 32.0 420 206977.982 0.0204 --0.0020 0.0011

20 35 02.0 600 207070.771 0.0165 0.0078 0.0125

20 42 02.0 240 207116.574 0.0281 0.0176 0.0221

20 53 02.0 600 207184.656 0.0168 --0.0059 0.0026

20 58 32.0 60 207217.266 0.0531 0.0020 0.0044

21 09 02.0 600 207275.895 0.0172 0.0000 0.0025

21 19 02.0 600 207327.932 0.0175 --0.0078 --0.0014

21 29 02.0 600 207376.027 0.0180 --0.0020 0.0021

21 39 02.0 600 207420.078 0.0189 --0.0117 --0.0061

21 49 02.0 600 207460.035 0.0205 --0.0059 0.0020

21 59 02.0 600 207495.822 0.0239 0.0117 0.0153

22 04 32.0 60 207513.916 0.0867 0.0508 0.0545

Transmiffer Frequency : 29.6691MHz

Pass_Dec. 16,1962

12 43 02.0 120 203464.207 0.0486 --0.0156 --0.0106

12 52 02.0 600 203508.217 0.0175 --0.0059 --0.0014

13 02 02.0 600 203560.760 0.0171 --0.0020 0.0001

13 12 02.0 600 203617.266 0.0168 0.0000 0.0061

13 22 02.0 600 203677.609 0.0167 --0.0078 --0.0020

13 32 02.0 600 203741.721 0.0166 --0.0039 0.0040

13 42 02.0 600 203809.457 0.0165 --0.0098 --0.0041

13 52 02.0 600 203880.727 0.0164 --0.0020 0.0054

13 57 32.0 60 203921.215 0.0514 --0.0234 --0.0162

14 07 02.0 600 203993.896 0.0164 --0.0449 --0.0376

14 17 02.0 600 204073.406 0.0163 --0.0234 --0.0183

14 27 02.0 600 204155.937 0.0162 --0.0313 --0.0281

14 36 32.0 540 204237.051 0.0172 0.0059 0.0088

14 50 02.0 600 204356.553 0.0162 --0.0098 --0.0034

15 O0 02.0 600 204448.057 0.0162 --0.0234 --0.0213

15 10 02.0 600 204541.957 0.0162 --0.0195 --0.0153

15 20 02.0 600 204638.062 0.0161 --0.0156 --0.0097

15 29 32.0 540 204731.217 0.0171 --0.0234 --0.0159

15 44 02.0 600 204876.641 0.0161 --0.0215 --0.0160

15 54 02.0 600 204978.914 0.0161 --0.0195 --0.0159

86

TransmitterFrequency = 29.6692 MHz

19 12 02.0 240 207046.516 0.0273 0.0078 0.0107

19 22 02.0 600 207138.504 0.0162 0.0156 0.0182

19 32 02.0 600 207228.068 0.0162 0.0195 0.0199

19 42 02.0 600 207314.953 0.0162 0.0039 0.0099

19 49 02.0 240 207374.221 0.0275 0.0039 0.0119

20 00 02.0 600 207464.166 0.0164 --0.0039 0.0021

20 13 02.0 600 207565.777 0.0164 0.0059 0.0119

20 22 02.0 480 207632.953 0.0189 0.0020 0.0078

20 35 32.0 540 207728.459 0.0176 0.0059 0.0133

20 46 02.0 240 207798.395 0.0282 0.0078 0.0130

20 58 02.0 600 207873.107 0.0169 0.0039 0.0090

21 08 02.0 600 207931.301 0.0172 0.0078 0.0105

21 18 02.0 600 207985.580 0.0176 --0.0020 0.0028

21 28 02.0 600 208035.877 0.0181 0.0020 0.0065

21 38 02.0 600 208082.098 0.0191 0.0117 0.0179

21 46 02.0 360 208116.172 0.0278 0.0039 0.0019

TransmiflerFrequency _ 29.6691MHz

Pass--Dec. 17, 1962

12 12 32.0 60 204127.398 0.0710 0.0273 0.0310

12 21 02.0 600 204159.180 0.0201 0.0039 0.0072

12 31 02.0 600 204200.318 0.0187 0.0156 0.0208

12 41 02.0 600 204245.600 0.0179 --0.0039 0.0033

12 51 02.0 600 204295.055 0.0174 0.0488 0.0517

13 01 02.0 600 204348.430 0.0171 --0.0078 --0.0012

13 11 02.0 600 204405.809 0.0168 0.0117 0.0182

13 21 02.0 600 204466.990 0.0167 0.0039 0.0085

13 31 02.0 600 204531.908 0.0166 --0.0020 0.0022

13 37 02.0 120 204572.475 0.0449 0.0117 0.0118

13 48 02.0 600 204650.533 0.0164 0.0234 0.0253

13 58 02.0 600 204724.943 0.0164 0.0273 0.0333

14 08 02.0 600 204802.609 0.0163 0.0156 0.0212

14 18 02.0 600 204883.430 0.0163 0.0176 0.0230

14 28 02.0 600 204967.227 0.0162 0.0020 0.0070

14 38 02.0 600 205053.873 0.0162 --0.0098 --0.0068

14 48 02.0 600 205143.230 0.0162 --0.0039 0.0009

14 58 02.0 600 205235.107 0.0162 --0.0039 0.0005

15 08 02.0 600 205329.334 0.0162 --0.0215 --0.0169

15 18 02.0 600 205425.779 0.0161 --0.0215 --0.0171

15 28 02.0 600 205524.260 0.0161 --0.0059 --0.0017
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Observation Count Doppler

time (UT2C) time data

h m s (see) (Hz)

15 38 02.0 600 205624.564

15 48 02.0 600 205726.543

15 56 02.0 360 205809.168

Transmitter Frequency = 29.6692 MHz

Table E-1 (contd)

16 18 02.0 600 206040.977

16 28 02.0 600 206147.768

16 38 02.0 600 206255.260

16 48 02.0 600 206363.264

16 58 02.0 600 206471.623

17 07 02.0 480 206569.256

17 42 32.0 540 206952.695

18 18 02.0 600 207326.826

18 28 02.0 600 207429.375

18 38 02.0 600 207530.328

18 48 02.0 600 207629.492

18 58 02.0 600 207726.701

19 08 02.0 600 207821.783

19 18 02.0 600 207914.547

19 28 02.0 600 208004.861

19 38 02.0 600 208092.529

19 43 32.0 60 208139.699

19 53 02.0 600 208218.777

20 03 02.0 600 208299.213

20 13 02.0 600 208376.477

20 20 32.0 300 208432.379

20 27 02.0 360 208479.182

21 46 02.0 600 208921.740

21 52 02.0 120 208945.258

21 59 02.0 120 208970.557

Error Linear

weight Resldual residual

(Hz) (Hz) (Hz)

0.0161 --0.0137 --0.0100

0.0161 --0.0117 --0.0076

0.0219 --0.0078 --0.0041

Transmitter Frequency = 29.6692 MHz

Pass_Dec. 19, 1962

0.0161 --0.0059 --0.0012

0.0161 0.0117 0.0207

0.0161 0.0117 0.0142

0.0161 --0.0039 0.0004

0.0161 0.0078 0.0101

0.0185 0.0000 0.0040

0.0170 0.0195 0.0230

0.0161 --0.0039 0.0006

0.0161 0.0000 0.0041

0.0161 0.0020 0.0056

0.0162 --0.0039 0.0000

0.0162 --0.0078 --0.0024

0.0162 --0.0098 --0.0046

0.0162 --0.0195 --0.0146

0.0162 --0.0137 --0.0108

0.0162 --0.0215 --0.0151

0.0511 --0.0137 --0.0094

0.0163 --0.0137 --0.0075

0.0164 0.0020 0.0057

0.0164 --0.0020 --0.0035

0.0250 --0.0039 0.0015

0.0225 --0.0059 --0.0010

0.0210 --0.0391 --0.0381

0.0624 --0.0391 --0.0343

0.0740 --0.0410 --0.0405

17 15 02.0 600 208252.398

17 25 02.0 600 208359.875

17 35 02.0 600 208466.879

17 45 02.0 600 208573.230

17 55 02.0 600 208678.717

18 05 02.0 600 208783.170

18 15 02.0 600 208886.381

18 25 02.0 600 208988.174

18 35 02.0 600 209088.361

18 45 02.0 600 209186.760

18 55 02.0 600 209283.191

19 05 02.0 600 209377.498

19 15 02.0 600 209469.496

19 24 32.0 600 209554.699

19 35 02.0 600 209645.881

19 45 02.0 600 209729.967

19 55 02.0 600 209811.111

20 05 02.0 600 209889.158

20 15 02.0 600 209963.988

20 25 02.0 600 210035.457

20 33 02.0 360 210090.221

0.0161 --0.0020 0.0040

0.0161 0.0020 0.0061

0.0161 0.0000 0.0057

0.0161 0.0059 0.0113

0.0161 --0.0039 0.0033

0.0161 0.0000 0.0067

0.0161 --0.0039 0.0008

0.0161 --0.0059 --0.0015

0.0161 --0.0078 --0.0037

0.0162 --0.0098 --0.0060

0.0162 --0.0156 --0.0120

0.0162 --0.0078 --0.0026

0.0162 0.0000 0.0069

0.0510 --0.0020 0.0044

0.0162 0.0000 0.0042

0.0163 0.0000 0.0044

0.0164 0.0039 0.0097

0.0164 --0.0020 0.0053

0.0165 0.0020 0.0073

0.0165 0.0039 0.0090

0.0226 0.0039 0.0087

Observation Count Doppler

time (UT2C) time data

h m S (see) (Hz)

20 46 02.0 600 210174.027

20 53 32.0 300 210219.705

21 06 02.0 600 210290.744

21 16 02.0 600 210343.262

21 30 02.0 600 210409.988

21 39 02.0 480 210448.680

Error Linear

weight Residual residual

(Hz) (Hz) (Hz)

0.0168 --0.0078 --0.0035

0.0259 --0.0137 --0.0078

0.0174 --0.0078 --0.0023

0.0178 0.0020 0.0092

0.0190 --0.0078 --0.0010

0.0236 --0.0137 --0.0095

Transmifler Frequency = 29.6691MHz

Pass--Dec. 20,1962

12 33 32.0 180 206531.889

12 40 02.0 120 206562.350

12 45 02.0 120 206586.932

12 55 02.0 600 206639.262

13 02 02.0 240 206677.994

13 14 02.0 600 206749.137

13 24 02.0 600 206812.432

13 34 02.0 600 206879.340

13 44 02.0 600 206949.746

13 54 02.0 600 207023.539

14 04 02.0 600 207100.578

14 14 02.0 600 207180.729

14 24 02.0 600 207263.848

14 34 02.0 600 207349.781

14 44 02.0 600 207438.369

14 58 02.0 600 207566.572

15 08 02.0 600 207660.889

15 16 02.0 360 207737.807

0.0369 --0.0039 0.0023

0.0483 0.0156 0.0217

0.0477 0.0059 0.0118

0.0172 --0.0020 0.0018

0.0287 --0.0059 0.0020

0.0168 --0.0059 0.0034

0.0166 0.0039 0 0074

0.0165 0.0000 0.0072

0.0164 --0.0059 --0.0008

0.0164 --0.0059 --0.0015

0.0163 --0.0059 --0.0015

0.0163 --0.0059 --0.0037

0.0162 --0.0059 0.0000

0.0162 --0.0059 0.0035

0.0162 --0.0078 --0.0062

0:0162 0.0000 0.0054

0.0162 --0.0059 --0.0023

0.0220 --0.0098 --0.0008

Transmitter Frequency = 29.6692 MHz

17 52 02.0 600 209372.205

18 02 02.0 600 209476.324

18 12 02.0 600 209579.238

18 22 02.0 600 209680.760

18 32 02.0 600 209780.707

18 40 32.0 420 209864.312

18 53 02.0 600 209984.631

19 03 02.0 600 210078.543

19 13 02.0 600 210170.135

19 23 02.0 600 210259.266

19 33 02.0 600 210345.781

19 43 02.0 600 210429.508

19 53 02.0 600 210510.295

20 03 02.0 600 210588.000

20 13 02.0 600 210662.496

20 23 02.0 600 210733.635

20 33 02.0 600 210801.301

20 43 02.0 600 210865.367

20 53 02.0 600 210925.730

21 03 02.0 600 210982.244

21 13 02.0 600 211034.861

21 23 02.0 600 211083.465

21 33 02.0 600 211127.986

21 43 02.0 600 211168.352

21 52 02.0 480 211201.119

0.0161 --0.0059 --0.0005

0.0161 --0.0117 --0.0048

0.0161 --0.0098 --0.0031

0.0161 --0.0098 --0.0033

0.0161 --0.0039 0.0041

0.0201 --0.0137 --0.0018

0.0162 --0.0098 --0.0041

0.0162 --0.0059 0.0011

0.0162 --0.0137 --0.0086

0.0162 --0.0215 --0.0149

0.0162 --0.0098 --0.0094

0.0163 --0.0098 --0.0036

0.0164 --0.0156 --0.0079

0.0164 --0.0215 --0.0144

0.0165 --0.0137 --0.0108

0.0165 --0.0156 --0.0125

0.0167 --0.0098 --0.0009

0.0168 --0.0020 0.0041

0.0170 0.0137 0.0176

0.0173 --0.0078 0.0036

0.0178 --0.0059 0.0033

0.0186 --0.0117 --0.0032

0.0198 --0.0078 --0.0016

0.0222 --0.0039 0.0042

0.0313 --0.0234 --0.0178
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Table E-2. Mariner II Doppler data (Station 12 transmitting, Station 12 receiving)

Transmitter Frequency = 29.6681 MHz

Pass -- Oct. 14 and Oct. 15, 1962

Observation Count Doppler

time (UT2C) time data

h m s

17 36 26.0

17 47 26.0

17 57 26.0

18 07 26.0

18 18 26.0

18 28 26.0

18 38 26.0

18 48 26.0

18 58 26.0

19 08 26.0

19 18 26.0

19 28 26.0

19 38 26.0

19 48 26.0

19 58 26.0

20 08 26.0

20 18 26.0

20 28 26.0

20 39 26.0

20 49 26.0

20 59 26.0

21 09 26.0

21 19 26.0

21 29 26.0

21 39 26.0

21 49 26.0

21 59 26.0

22 09 26.0

22 19 26.0

22 29 26.0

22 39 26.0

22 49 26.0

22 59 26.0

Error Linear

weight Residual residual

(sec) (Hz) (Hz) (Hz) (Hz)

50 120700.299 0.0162 --0.0039 --0.0038

50 120700.399 0.0161 --0.0010 0.0001

50 120770.039 0.0161 --0.0039 --0.0039

50 120843.279 0.0161 --0.0088 --0.0088

50 120927.859 0.0161 0.0010 0.0020

50 121008.199 0.0161 --0.0234 --0.0225

50 121091.739 0.0160 --0.0127 --0.0127

50 121178.300 0.0160 0.0059 --0.0039

50 121267.680 0.0160 --0.0059 --0.0059

50 121359.760 0.0160 --0.0059 --0.0049

50 121454.359 0.0159 --0.0029 --0.0011

50 121551.279 0.0159 --0.0195 --0.0196

50 121650.399 0.0159 0.0010 0.0019

50 121751.460 0.0159 --0.0166 --0.0157

50 121854.340 0.0159 --0.0049 --0.0040

50 121958.800 0.0159 --0.0137 --0.0128

50 122064.680 0.0159 --0.0068 --0.0070

50 122171.760 0.0159 --0.0107 --0.0089

50 122290.720 0.0159 0.0000 0.0008

50 122399.680 0.0159 --0.0117 --0.0109

50 122509.239 0.0159 --0.0098 --0.0089

50 122619.180 0.0159 --0.0088 --0.0070

50 122729.300 0.0159 --0.0059 --0.0040

50 122839.399 0.0159 0.0049 0.0057

50 122949.260 0.0159 0.0078 0.0087

50 123058.680 0.0159 0.0059 0.0077

50 123167.460 0.0159 0.0068 0.0077

50 123275.399 0.0159 0.0078 0.0097

50 123382.279 0.0159 --0.0068 --0.0050

50 123487.939 0.0159 0.0000 0.0019

50 123592.159 0.0159 0.0059 0.0068

50 123694.760 0.0159 0.0234 0.0244

50 123795.500 0.0159 0.0029 0.0049

Observation Count

time (UT2C)

h m s

23 09 26.0

23 19 26.0

23 29 26.0

23 39 26.0

23 49 26.0

23 59 26.0

O0 09 26.0

O0 19 26.0

O0 29 26.0

O0 39 26.0

O0 49 26.0

O0 59 26.0

01 31 26.0

01 42 26.0

01 52 26.0

02 02 26.0

02 12 26.0

02 22 26.0

02 32 26.0

02 42 26.0

Doppler E_or Linear

time data weight Residual residual

(sec) (Hz) (Hz) (Hz) (Hz)

50 123894.260 0.0159 0.0117 0.0127

50 123990.800 0.0159 --0.0088 --0.0068

50 124085.000 0.0160 0.0029 0.0039

50 124176.659 0.0160 0.0166 0.0196

50 124265.579 0.0160 0.0078 0.0089

50 124351.619 0.0160 --0.0039 --0.0028

50 124434.659 0.0161 0.0186 0.0148

50 124514.479 0.0161 0.0137 0.0158

50 124590.979 0.0161 0.0234 0.0256

50 124663.979 0.0161 0.0088 0.0109

50 124733.380 0.0162 0.0049 0.0061

50 124799.039 0.0162 --0.0049 --0.0037

50 124982.720 0.0165 --0.0225 --0.0212

50 125036.140 0.0166 --0.0117 --0.0094

50 125080.199 0.0168 --0.0146 --0.0123

50 125119.920 0.0171 0.0020 0.0033

50 125155.199 0.0176 0.0020 0.0034

50 125186.000 0.0182 0.0088 0.0102

50 125212.239 0.0195 --0.0107 --0.0102

50 125233.920 0.0222 --0.0186 --0.0170

Transmitter Frequency = 29.6681 MHz

Pass -- Oct. 24, 1962

15 42 26.0

15 52 26.0

16 02 26.0

16 12 26.0

16 22 26.0

16 32 26.0

16 42 26.0

16 52 26.0

50 126672.680 0.0170 0.0010 0.0009

50 126716.140 0.0167 0.0088 0.0087

50 126763.920 0.0165 0.0098 0.0077

50 126815.939 0.0164 0.0000 --0.0011

50 126872.119 0.0164 --0.0068 --0.0060

50 126932.380 0.0162 0.0068 0.0067

50 126996.579 0.0162 0.0020 0.0008

50 127064.640 0.0162 0.0137 0.0135
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Nomenclature

A

A

Aeff

E

E

F(t)dt

F__

G

G

(G_,, G,)

H

H

Ho

(I. I_, I:)

L

K

K'

L

M

M

Mo

My

M s
v

as a scalar; number of km in one astronomical

unit (a.u.)

as a matrix; matrix of differential coefficients

defined by dz = Adx

effective area of spacecraft for solar radiation

pressure

harmonic coefficient of cos ra,_ in expansion
of potential function

mass of Earth (gms)

vector of orbital elements for Earth

number of Doppler cycles occurring in inter-
valttot + dt

factor for modified Kepler's third law in lunar
motion

flux of radiation from Sun at spacecraft dis-
tance

solar constant

as a scalar; universal gravitational constant

(laboratory units)

as a matrix; matrix of differential coefficients

defined by dz = Gdq + Hds

parameters for tangential and normal low-

thrust forces for unbalanced gas jets

as a scalar; altitude above surface of Earth

as a matrix; matrix of differential coefficients

defined by dz = Gdq + Hds

atmospheric scale height

principal moments of inertia about body-fixed
axes

coefficient of nth order zonal harmonic in

expansion of potential function

orbital parameter defined by na (1-e2) -1/2sin i

multiplying factor for received frequency

lunar inequality

as a scalar; mass of Moon (gms)

as a matrix; matrix to rotate from 1950.0 mean

equatorial coordinates to mean equatorial co-
ordinates of date

mean anomaly at the epoch

mass of Venus (gms)

mass of Venus (solar mass units)

N as a scalar; constant of nutation

N as a matrix; matrix to rotate from mean equa-

torial coordinates of date to true equatorial
coordinates of date

N unit vector normal to Earth-Sun-spacecraft
plane

N3 null matrix of order three

Nv number of Doppler cycles accumulated by

electronic cycle counting device

P_ heliocentric period of Earth

Pc constant of parallactic inequality

P_ non-gravitational perturbative acceleration

Q(x) weighted sum of squares of residuals plus

a-priori term

R geocentric position vector of tracking station

R1 mean radius of Earth at geocentric latitude

q_ = sin -1 v'l/8

RB mean distance of Earth from Earth-Moon

barycenter

Re,_ scaling factor to convert the lunar ephemeris
to km

S mass of Sun (gins)

S(x) weighted sum of squares of residuals

S ..... harmonic coefficient of sin m,k in expansion

of potential function

T unit tangential vector

Tc interval of time over which integrated cycle
count is accumulated

T,, set of orbital elements for Venus

U as a scalar; potential function

U as a matrix; matrix of differential coefficients

in expression dq = Udqo + Vdp

U unit position vector

V as a scalar; geocentric radial velocity of Venus

V as a matrix; matrix of differential coefficients

in expression dq --- Udqo + Vdp

VL linear velocity of Earth about Earth-Moon

barycenter

Voo hyperbolic velocity at infinite distance

W diagonal weighting matrix for set of data
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Nomenclature (contd)

(X, Y, Z) inertial ecliptic coordinates

a semi-maior axis

ae mean equatorial radius of Earth

as mean Sun-Earth distance

a_ mean Earth-Moon distance

b semi-minor axis

c velocity of light

e eccentricity

f Doppler observation

(fl, f2, f3) components of acceleration from low-thrust
forces

gl mean acceleration of gravity at geocentric

latitude 4, = sin -1

i inclination

k gaussian gravitational constant

k' multiplying factor for spacecraft frequency

k_e geocentric gravitational constant

k_m selenocentric gravitational constant

k_ heliocentric gravitational constant

k_v Venus-centered gravitational constant

generic longitude

m generic mass

n as an orbital element; mean motion

n as a physical constant; index of refraction

p as a scalar; general precessional constant

p as a column matrix; set of astronomical con-
stants

q set of six position and velocity coordinates

r position vector

i- velocity vector

(r, ¢) polar coordinates

s as a scalar; number of ephemeris seconds in

one tropical year (1900)

s as a column matrix; set of station coordinates

o

s magnitude of velocity vector

t time parameter

tm

rob

X

(x, y, z)

Z

z(x)

AJ

At

Arp

0

f_

(_, _)

B

y

y

E

0

Oo

)t

v

rob

Vtr

time at midpoint of cycle count time interval

observation time

true anomaly

set of parameters

set of a-priori parameters

principal coordinate axes

set of observations

set of computed observations

covariance matrix for a-priori parameters

refraction correction to Doppler data

time interval between successive Doppler
observations

refraction correction to topocentric range

matrix of differential coefficients in expres-

sion d_/ = ,l,dq + Odp

as a scalar; gravitational potential energy

as a matrix; matrix of differential coefficients

in expression do = ovdq + Odp

longitude of ascending node

right ascension

coefficients in quadratic model for low-thrust
forces

quadratic function (1 - alT - aj-')

generic latitude

unknown parameter in solar radiation pres-
sure model

as an angle; elevation angle above horizon

declination

obliquity of ecliptic

local sidereal time

Greenwich true sidereal time

Eulerian angles

geocentric longitude

mass ratio of Moon to Earth (M/E)

generic frequency

received frequency

transmitted frequency

solar parallax
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Nomenclature (contd)

,re lunar parallax

p topocentric range

_b topocentric range rate

p topocentric range vector

p_, _ correlation coefficient between parameters x
and y

a standard deviation

r time interval from epoch

ra number of light-seconds in one astronomical
unit

r, light time for distance r

_' geocentric latitude

angle in polar coordinates (r, _)

q_r the derivative de�dr

argument of periapsis

_oe angular rotation rate of Earth

References

1. Anderson, J. D., Null, G. W., and Thornton, C. T., "The Evaluation of Cer-

tain Astronomical Constants from the Radio Tracking of Mariner II," AIAA

Series on Progress in Astronautics and Aeronautics, Vol. 14, "Celestial Me-

chanics and Astrodynamics," V. Szebehely, Ed., Academic Press, Inc., New

York, 1964.

2. Anderson, J. D., and Warner, M. R., "Determination of the Masses of the

Moon and Venus and the Astronomical Unit from the Radio Tracking of

Mariner II," Trajectories of Artificial Celestial Bodies, J. Kovalevsky, Ed.,
Springer-Verlag, Berlin, Heidelberg and New York, 1966.

3. Mariner-Venus 1962 Final Project Report, NASA SP-59, Washington, 1965.

4. Warner, M. R., Nead, M. W., and Hudson, R. H., The Orbit Determination

Program of the ]et Propulsion Laboratory, JPL TM No. 32-168, March 18,
1964.

5. Warner, M. R., and Nead, M. W., SPODP-Single Precision Orbit Determina-

tion Program, JPL TM No. 33-204, Feb. 15, 1965.

6. Sjogren, W. J., and Trask, D. W., "Astrodynamical Results from the Radio

Tracking of the Mariner Venus and Ranger Lunar Missions," Paper presented

at the AIAA 2nd Aerospace Sciences Meeting, New York, Jan. 25-27, 1965,

AIAA paper No. 65-91.

7. Herrick, S., Astrodynamics, Chaps. 6, 13 and Appendices, Van Nostrand,
1967.

8. Clemence, G. M., "The System of Astronomical Constants," Annual Review

of Astronomy and Astrophysics, Vol. 3, Annual Reviews Inc., Palo Alto, 1965.

9. de Sitter, W., "On the System of AstrOnomical Constants," Bulletin of the

Astronomical Institutes of the Netherlands, Vol. VIII, p. 213, 1938.

JPL TECHNICAL REPORT 32-816 91



References (contd)

10. Herrick, S., Baker, R. M. L. Jr., and Hilton, C. G., "Gravitational and Re-

lated Constants for Accurate Space Navigation," Proceedings VIII Interna-

tional Astronautical Congress, Barcelona, 1957, Wien, Springer-Verlag, 1958;

U.C.L.A. Astr. Pap., Vol. 1, No. 24, pp. 297-338.

11. Kovalevsky, J., The System of Astronomical Constants, IAU Symposium No.

21, Gauthier-Villars, Paris, 1965.

12. Morgan, H. R., and Oort, J. H., Bull. Astron. Inst. Neth., Vol. II, p. 379, 1951.

13. Hey], P. R., "A New Determination of the Constant of Gravitation," National

Bureau of Standards Journal of Research, Vol. 29, No. 1, pp. 1-31, 1942.

14. Eckert, W. J., Brouwer, D., Clemence, G. M., "Coordinates of the Five Outer

Planets, 1653-2060," Astronomical Papers of the American Ephemeris and

Nautical Almanac, Vol. XII, U.S. Government Printing Office, Washington,

D.C., 1951.

15. Gauss, C. F., Theoria Motus Corporum Coelestium in Sectionibus Conicis

Solem Ambientitlm 1809, English translation by Charles Henry Davis, Little

Brown, Boston, 1857.

16. "Proems Verbaux des Sciences," deuxi_'me s_rie, Vol. 25, No. 77, 1957.

17. Markowitz, Wm., "The Atomic Time Scale," IRE Transactions on Instru-

mentation, Vol. I-II, No. 3 and 4, December, 1962.

18. Froome, K. D., "A New Determination of the Free-Space Velocity of Electro-

magnetic Waves," Proceedings of the Royal Society of London, A247, No.

1248, pp. 109-122, September, 1958.

19. Transactions of the International Astronomical Union, Vol. XI B, 1962.

20. Anderle, R. J., "Computational Methods Employed with Doppler Observa-
tions and Derivation of Geodetic Results," Trajectories of Artificial Celestial

Bodies, Springer-Verlag, Berlin, Heidelberg, New York, 1966.

21. Explanatory Supplement to the Astronomical Ephemeris and the American

Ephemeris and Nautical Almanac, Prepared by H. M. and U. S. Nautical

Almanac Office, H. M. Stationery Office, London, 1961.

22. Clarke, V. C., Jr., Constants and Related Data for Use in Trajectory Calcu-

lations as Adopted by the Ad Hoc NASA Standard Constants Committee,

JPL TR No. 32-604, March 6, 1964.

23. Peabody, P. R., Scott, J. N., and Orozco, E. G., ]PL Ephemeris Tapes E9510,

E9511, and E9512, JPL TM No. 33-167, March 2, 1964.

24. White, R. J., Rosenberg, A. D., Fisher, P. S., Harris, R. A., and Newhall, N. S.,

SPACE-Single Precision Cowell Trajectory Program, JPL TM No. 33-198,

January 15, 1965.

25. Eckert, W. J., Jones, R., and Clark, H. K., Improved Lunar Ephemeris 1952-

1959, U.S. Government Printing Office, Washington, D.C., 1954.

26. Brown, E. W., "Theory of the Motion of the Moon," Part IV, Memoirs of the

Royal Astronomical Society, Vol. 57, pp. 130-145, 1908.

92 JPL TECHNICAL REPORT 32-816



References (contd)

27. Smart, W. M., Spherical Astronomy, Cambridge University Press, 1956.

28. Brouwer, D., and Clemence, G. M., Celestial Mechanics, Academic Press,

New York and London, 1961.

29. Bergmann, P. G., Introduction to the Theory of Relativity, Prentice-Hall,

Englewood Cliffs, 1942.

30. United States Naval Observatory, Final Times of Emission, Bulletins 199
and 200.

31. Baker, R. M. L., Jr., and Makemson, M. W., An Introduction to Astrody-

namics, Academic Press, New York and London, 1960.

32. Abbot, C. G., Annals of the Astrophysical Observatory of the Smithsonian

Institution, Vol. 3, p. 157, 1913, and Vol. 4, p. 221, 1922.

33. Herrick, S., "A Comparison of Astronomical and Ballistic Traditions in Orbit

Computation," U.C.L.A. Astrodynamical Report No. 14, May, 1962.

34. Herrick, S., "Universal Variables," Astronomical Journal, Vol. 70, pp. 309-315,

May, 1965.

35. Milne, W. E., Numerical Solution of Differential Equations, John Wiley and

Sons, London, 1953.

36. Pipes, L. A., Applied Mathematics for Engineers and Physicists, 2nd Edition,
McGraw-Hill, New York, Toronto, London, 1958.

JPL TECHNICAL REPORT 32-816 93


